/TopicModel4J

TopicModel4J: A Java Package for Topic Models (Contain LDA, Collapsed Variational Bayesian Inference for LDA, author-topic model, BTM, dirichlet multinomial mixture model, DPMM, Dual Sparse Topic Model, GaussianLDA, Hierarchical Dirichlet processes, Labeled LDA, Link LDA, Pseudo-document-based Topic Model, Sentence LDA and so on)

Primary LanguageJavaGNU General Public License v2.0GPL-2.0

Software Introduction

This Java package corresponds to my research paper as follows:
Qian Y, Jiang Y, Chai Y, et al. TopicModel4J: A Java Package for Topic Models[J]. arXiv preprint arXiv:2010.14707, 2020.

This package is about Topic Models for Natural Language Processing (NLP). And it provides an easy-to-use interface for researchers and data analysts.

Motivations:I develop this Java package to promote related research about Topic Models for Natural Language Processing (NLP).

When submitting my research paper to a journal, I will publicly release all the source code.

Jar Dependency

If you want to use this package, you need download some Java jars: commons-math3-3.5.jar, lingpipe-4.1.0.jar, stanford-corenlp-3.9.1-models.jar, stanford-corenlp-3.9.1-sources.jar, stanford-corenlp-3.9.1.jar. The stanford-corenlp 3.9.1 can be download from this website: http://central.maven.org/maven2/edu/stanford/nlp/stanford-corenlp/3.9.1/.

Data Preprocessing for NLP

This software can do the following text preprocessing:

  • (1) Split the sentence to words.
  • (2) Lowercase the words and preform lemmatization.
  • (3) Remove useless characters, URLs and stop words.

The first example is as follows:

import java.util.ArrayList;
import com.topic.utils.FileUtil;
public class RawDataProcess {
	/**
	 * Functions:
	 * 
	 * (1) Split the sentence to words
	 * (2) Lowercase the words and preform lemmatization
	 * (3) Remove special characters (e.g., #, % and &), URLs and stop words
	 * 
	 * @author: Yang Qian
	 */
	public static void main(String[] args) {
			String line = "http://t.cn/RAPgR4n Artificial intelligence is a known phenomenons "
					+ "in the world today. Its root started to build years "
					+ "ago but the tree started to grow long after. Months ago when our beloved google assistant made her first "
					+ "call to book a haircut appointment in the Google IO event,";
			//get all word for a document
			ArrayList<String> words = new ArrayList<String>();
			//lemmatization using StanfordCoreNLP
			FileUtil.getlema(line, words);
			//remove noise words
			String text = FileUtil.RemoveNoiseWord(words);
			System.out.println(text);
	}
}

Running this code, we can obtain the following results:

artificial intelligence phenomenon world today root start build year ago tree start grow long month ago beloved google assistant make call book haircut appointment Google IO event

If we want deal a file which a line represent one document. For example,

We present a new algorithm for domain adaptation improving upon a discrepancy minimization algorithm, (DM), previously shown to outperform a number of algorithms for this problem. 
We investigated the feature map inside deep neural networks (DNNs) by tracking the transport map. We are interested in the role of depth--why do DNNs perform better than shallow models?

We denote this file as 'rawdata'. And we can use the next code to deal with:

import java.io.IOException;
import java.util.ArrayList;
import com.topic.utils.FileUtil;

public class RawDataProcessing {
	/**
	 * Functions:
	 * 
	 * (1) Split the sentence to words
	 * (2) Lowercase the words and preform lemmatization
	 * (3) Remove special characters (e.g., #, % and &), URLs and stop words
	 * 
	 * @author: Yang Qian
	 */
	public static void main(String[] args) throws IOException {
		//read data
		ArrayList<String> docLines = new ArrayList<String>();
		FileUtil.readLines("data/rawdata", docLines, "gbk");
		ArrayList<String> doclinesAfter = new ArrayList<String>();
		for(String line : docLines){
			//get all word for a document
			ArrayList<String> words = new ArrayList<String>();
			//lemmatization using StanfordCoreNLP
			FileUtil.getlema(line, words);
			//remove noise words
			String text = FileUtil.RemoveNoiseWord(words);
			doclinesAfter.add(text);
		}
		// write data
		FileUtil.writeLines("data/rawdata_process", doclinesAfter, "gbk");
	}
}

Algorithm for NLP

The algorithms in this package contain **Latent Dirichlet Allocation (LDA), Biterm Topic Model (BTM), Author-topic Model (ATM), Dirichlet Multinomial Mixture Model (DMM), Dual-Sparse Topic Model (DSTM), Labeled LDA, Link LDA, Sentence-LDA, Pseudo-document-based Topic Model (PTM), Hierarchical Dirichlet processes, Collaborative topic Model (CTM), Gaussian Lda and so on **. Now, I will intorduce how to use my package for running some algorithms.

Latent Dirichlet Allocation (Collapsed Gibbs sampling)

Reference: (1) Griffiths T. Gibbs sampling in the generative model of latent dirichlet allocation[J]. 2002.
(2) Heinrich G. Parameter estimation for text analysis[R]. Technical report, 2005.
The following code is to call the LDA algorithm for processing text:

import com.topic.model.GibbsSamplingLDA;

public class LDAGibbsSamplingTest {

	public static void main(String[] args) {
		GibbsSamplingLDA lda = new GibbsSamplingLDA("data/rawdata_process_lda", "gbk", 50, 0.1,
				0.01, 500, 50, "data/ldaoutput/");
		lda.MCMCSampling();

	}
}

Where the constructor method GibbsSamplingLDA() is:

public GibbsSamplingLDA(String inputFile, String inputFileCode, int topicNumber,
			double inputAlpha, double inputBeta, int inputIterations, int inTopWords,
			String outputFileDir)

The input file ('rawdata_process_lda') contains many document, like:

input file

Running the LDAGibbsSamplingTest.java, we can obtain the result after some iterations.
Running

The outfile contains 'LDAGibbs_topic_word_50.txt' and 'LDAGibbs_doc_topic50.txt'. The content of 'LDAGibbs_topic_word_50.txt' likes:

Topic:1
study :0.03364301916742469
student :0.029233711281785802
online :0.01600578762486915
game :0.01502594142806051
teacher :0.012739633635507014
social :0.01192309513816648
activity :0.010453325842953519
examine :0.01029001814348541
technology :0.00980009504508109
...

Topic:2
fuzzy :0.07505158709641029
method :0.031024330934552934
decision :0.02585387024650563
criterion :0.021780173946831995
propose :0.021310132066100423
base :0.017706477647158363
number :0.016609713258784693
problem :0.015982990751142595
uncertainty :0.013632781347484729
set :0.012692697586021583
make :0.012536016959111058
paper :0.012379336332200534
risk :0.011752613824558436
...

Latent Dirichlet Allocation (Collapsed Variational Bayesian Inference)

We also use Collapsed Variational Bayesian Inference (CVBI) for learning the parameters of LDA.
Reference: (1)Teh Y W, Newman D, Welling M. A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation[C]//Advances in neural information processing systems. 2007: 1353-1360.
(2)Asuncion A, Welling M, Smyth P, et al. On smoothing and inference for topic models[C]//Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press, 2009: 27-34.

The following code is to call the algorithm for processing text:

import com.topic.model.CVBLDA;

public class CVBLDATest {

	public static void main(String[] args) {
		CVBLDA cvblda = new CVBLDA("data/rawdata_process_lda", "gbk", 30, 0.1,
				0.01, 200, 50, "data/ldaoutput/");
		cvblda.CVBInference();
	}
}

Where the constructor method GibbsSamplingLDA() is:

public CVBLDA(String inputFile, String inputFileCode, int topicNumber,
			double inputAlpha, double inputBeta, int inputIterations, int inTopWords,
			String outputFileDir)

Running the CVBLDATest.java, we can obtain the result liking LDAGibbsSamplingTest.java.

Labeled LDA

We use gibbs sampling for implementing the Labeled LDA algorithm.
Reference:Ramage D, Hall D, Nallapati R, et al. Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1. Association for Computational Linguistics, 2009: 248-256.

The following code is to call the Labeled LDA algorithm for processing text:

import com.topic.model.LabeledLDA;

public class LabeledLDATest {

	public static void main(String[] args) {
		LabeledLDA llda = new LabeledLDA("data/rawdata_process_author", "gbk", 0.1,
				0.01, 500, 50, "data/ldaoutput/");
		llda.MCMCSampling();
	}
}

Where the constructor method LabeledLDA() is:

public LabeledLDA(String inputFile, String inputFileCode,
			double inputAlpha, double inputBeta, int inputIterations, int inTopWords,
			String outputFileDir)

The input file ('rawdata_process_author') contains many document with labels, like:

457720--578743--643697--840908--874627--975162--1058302--1275106--1368496--1769120--1769130--2135000	paper present indoor navigation range strategy monocular camera exploit architectural orthogonality indoor environment introduce method estimate range vehicle state monocular camera visionbased SLAM navigation strategy assume indoor indoorlike manmade environment layout previously unknown gpsdenied representable energy base feature point straight architectural line experimentally validate propose algorithm fully selfcontained microaerial vehicle mav sophisticated onboard image processing slam capability building enable small aerial vehicle fly tight corridor significant technological challenge absence gps signal limited sense option experimental result show systemis limit capability camera environmental entropy
273266--1065537--1120593--1474359--1976664--2135000	globalisation education increasingly topic discussion university worldwide hand industry university leader emphasise increase awareness influence global marketplace skill graduate time emergence tertiary education export market prompt university develop international recruitment strategy offer international student place undergraduate graduate degree programme article examine phenomenon globalisation emergence global intercultural collaboration delivery education effort global intercultural collaboration offer institution student learn successful approach

Where the label and the document are segmented by '\t'. The label can be String character. Running the LabeledLDATest.java, we can output two files (LabeledLDA_topic_word.txt and LabeledLDA_doc_topic.txt).
The contents of 'LabeledLDA_topic_word.txt' like:

Topic:1
system :0.008885972224685621
car :0.008885972224685621
mf :0.007112325074049769
stalk :0.0053386779234139165
speed :0.0053386779234139165
year :0.0053386779234139165
...

Topic:2
residual :0.017458207100978618
lease :0.015278655652666681
cash :0.015278655652666681
plan :0.013099104204354743
car :0.010919552756042806
price :0.00874000130773087
texas :0.00874000130773087
buy :0.006560449859418931
...

Partially Labeled Dirichlet Allocation

Gibbs sampling for Partially Labeled Dirichlet Allocation

Reference:Ramage D, Manning C D, Dumais S. Partially labeled topic models for interpretable text mining[C]//Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2011: 457-465.

package example;

import com.topic.model.PLDA;

public class PLDATest {

	public static void main(String[] args) {
		PLDA plda = new PLDA("data/rawdata_process_author", "gbk", 3, 0.1,
				0.01, 500, 50, "data/ldaoutput/");
		plda.MCMCSampling();

	}

}

Where the constructor method PLDA() is:

public PLDA(String inputFile, String inputFileCode,int label_topicNumber,
			double inputAlpha, double inputBeta, int inputIterations, int inTopWords,
			String outputFileDir)

Sentence LDA

We use Collapsed Gibbs sampling for implementing the Sentence-LDA.
Reference: (1)Jo Y, Oh A H. Aspect and sentiment unification model for online review analysis[C]//Proceedings of the fourth ACM international conference on Web search and data mining. ACM, 2011: 815-824.
(2) Büschken J, Allenby G M. Sentence-based text analysis for customer reviews[J]. Marketing Science, 2016, 35(6): 953-975.

The following code is to call the Sentence LDA algorithm for processing text:

import com.topic.model.SentenceLDA;

public class SentenceLDATest {

	public static void main(String[] args) {
		SentenceLDA sentenceLda = new SentenceLDA("data/rawdata_sentenceLDA", "gbk", 50, 0.1,
				0.01, 500, 50, "data/ldaoutput/");
		sentenceLda.MCMCSampling();
	}
}

Where the constructor method LabeledLDA() is:

public SentenceLDA(String inputFile, String inputFileCode, int topicNumber,
			double inputAlpha, double inputBeta, int inputIterations, int inTopWords,
			String outputFileDir)

The input file ('rawdata_sentenceLDA') contains many document, like:

fundamental step software design process selection refinement implementation data abstraction--step traditionally involve investigate expect performance system refinement abstraction select single alternative minimize performance cost metric--paper reformulate design step allow refinement datum abstraction computation--reformulation reflect fact implementation data abstraction dependent behavior exhibit object abstraction--behavior vary object computation single refinement inappropriate--framework present understanding represent variation behavior object potential multiple implementation--framework base static partitioning object disjoint implementation class static partitioning class implementation region dynamic partitioning class implementation region--framework analytic tool useful investigate expect performance multiple implementation describe detail
preface front matter full preface advance design production computer hardware bring people direct contact computer--similar advance design production computer software require order increase contact rewarding--smalltalk-80 system result decade research create computer software produce highly functional interactive contact personal computer system--book detailed account smalltalk-80 system--divide major part Part overview concept syntax programming language--Part annotated illustrated specification system functionality--Part design implementation moderate-size application--Part specification smalltalk-80 virtual machine

Where the separator between sentences is '--'.
Running the LabeledLDATest.java, we can output two files (SentenceLDA_doc_topic50.txt and SentenceLDA_topic_word_50.txt).

BTM

We use Collapsed Gibbs sampling for implementing the biterm topic model.
Reference:(1) Cheng X, Yan X, Lan Y, et al. Btm: Topic modeling over short texts[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(12): 2928-2941.
(2)Yan X, Guo J, Lan Y, et al. A biterm topic model for short texts[C]//Proceedings of the 22nd international conference on World Wide Web. ACM, 2013: 1445-1456.
The following code is to call the BTM algorithm for processing text:

import com.topic.model.BTM;

public class BTMTest {

	public static void main(String[] args) {
		BTM btm = new BTM("data/shortdoc.txt", "gbk", 15, 0.1,
				0.01, 1000, 30, 50, "data/ldaoutput/");
		btm.MCMCSampling();
	}
}

Where the constructor method BTM() is:

public BTM(String inputFile, String inputFileCode, int topicNumber,
			double inputAlpha, double inputBeta, int inputIterations, int inTopWords, int windowS,
			String outputFileDir)

The input file ('rawdata_sentenceLDA') contains many document (5 documents), like:

iphone crack iphone 
adding support iphone announced 
youtube video guy siri pretty love 
rim made easy switch iphone yeah 
realized ios 

Running the BTMTest.java, we can output four files:
在这里插入图片描述

The contents of 'BTM_topic_word_15.txt' like:

Topic:1
love :0.06267534660746875
market :0.04905619262931387
nexus :0.04360853103805192
share :0.03271320785552802
video :0.02998937705989704
wow :0.02998937705989704
beautiful :0.02998937705989704
shit :0.02998937705989704
...

Topic:2
scream :0.05755999328746434
android :0.05036799079423681
shit :0.04557332246541846
game :0.03838131997219093
haven :0.03598398580778175
talk :0.03118931747896339
people :0.028791983314554216
mango :0.026394649150145038
job :0.02399731498573586
nice :0.02399731498573586
...

Pseudo-document-based Topic Model

Collapsed Gibbs sampling in the generative model of Pseudo-document-based Topic Model
Reference:Zuo Y, Wu J, Zhang H, et al. Topic modeling of short texts: A pseudo-document view[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2016: 2105-2114.

The following code is to call the PTM algorithm for processing text:

import com.topic.model.PseudoDTM;

public class PTMTest {

	public static void main(String[] args) {
		PseudoDTM ptm = new PseudoDTM("data/shortDocument.txt", "gbk", 300, 50, 0.1, 0.1,
				0.01, 500, 50, "data/ldaoutput/");
		ptm.MCMCSampling();
	}

}

Where the constructor method PseudoDTM() is:

public PseudoDTM(String inputFile, String inputFileCode, int pDocumentNumber, int topicNumber,
			double inputAlpha, double inputBeta, double inputLambada, int inputIterations, int inTopWords,
			String outputFileDir)

The input file ('shortDocument.txt') contains many document (5 documents), like:

470 657
2139 3204 3677
109 111 448 2778 2980 3397 3405 3876
117 4147
66 375

The output contains three file
:

在这里插入图片描述

The contents of 'PseudoDTM_topic_word_50.txt' like:

Topic:1
837 :0.04213507251351584
447 :0.032695443233502104
3217 :0.029262850768042567
579 :0.026688406418947912
407 :0.024972110186218144
2567 :0.024113962069853258
2954 :0.024113962069853258
...

Topic:2
159 :0.05377295861916353
172 :0.04270856384155786
59 :0.03701830367021781
850 :0.03670217810514336
65 :0.033224796889324434
412 :0.0316441690639522
69 :0.03132804349887775
587 :0.029747415673505515
703 :0.028166787848133274
802 :0.02627003445768659
153 :0.02468940663231435
146 :0.022792653241867668
3683 :0.022160402111718772
...

Author-topic Model

Collapsed Gibbs sampling for author-topic model

Reference:Rosen-Zvi M, Griffiths T, Steyvers M, et al. The author-topic model for authors and documents[C]//Proceedings of the 20th conference on Uncertainty in artificial intelligence. AUAI Press, 2004: 487-494.

import com.topic.model.AuthorTM;

public class ATMTest {

	public static void main(String args[]) throws Exception{
		AuthorTM lda = new AuthorTM("/home/qianyang/dualsparse/rawdata_process_author", "gbk", 25, 0.1,
				0.01, 500, 50, "/home/qianyang/dualsparse/output/");
		lda.MCMCSampling();
	}

}

Where the constructor method AuthorTM() is:

public AuthorTM(String inputFile, String inputFileCode, int topicNumber,
			double inputAlpha, double inputBeta, int inputIterations, int inTopWords,
			String outputFileDir)

The output result:

// output the result
System.out.println("write topic word ..." );
writeTopWordsWithProbability();
System.out.println("write author topic ..." );
writeAuthorTopic();
System.out.println("write ranked topic author ..." );
writeTopicAuthor();

The output file contains:
在这里插入图片描述

We run the code in Linux Server.

The example (contains two documents) of the input file likes:

Volkswagen Golf--BMW	jhend925 correct gti heat seat include trim
Kia Soul--Ford Escape--Toyota RAV4	car_man current lease number Soul Exclaim premium package market quote pathetic offer walk dealership contact EXACT vehicle

The contents of 'authorTM_topic_author_25.txt' like:

Topic:1
Lexus IS 200t :0.82801393728223
GMC Acadia :0.7883767535070141
Saturn L300 :0.775535590877678
Lexus NX 300h :0.7683754512635379
Porsche Cayenne :0.7153568853640953
Audi R8 :0.610393466963623
Oldsmobile Alero :0.5796109993293093
...

Topic:2
BMW X6 :0.32407809110629066
Lincoln Continental :0.255003599712023
Audi A5 :0.2263959390862944
Ford Edge :0.1896140350877193
Cadillac ATS-V :0.1740510697032436
Pontiac G5 :0.1566591422121896
Lexus NX 300 :0.13647570703408266
Volkswagen Tiguan :0.13225579761068165
...

The contents of 'authorTM_topic_word25.txt' like:

Topic:1
drive :0.08731467480511887
awd :0.06541822490968394
post :0.054768834886097705
time :0.03145971080386051
base :0.030427371975043478
rate :0.029014697788241225
high :0.027765024469146922
door :0.02695002013060716
show :0.024179005379571968
...

Topic:2
person :0.028071566434497267
miles/year :0.02691409539297589
hood :0.01939053362308692
article :0.015918120498522776
max :0.014760649457001397
console :0.013313810655099673
massachusetts :0.013313810655099673
rubber :0.013024442894719327
section :0.010709500811676568
...

LinkLDA

Collapsed Gibbs sampling in the generative model of Link LDA

Reference:(1)Erosheva E, Fienberg S, Lafferty J. Mixed-membership models of scientific publications[J]. Proceedings of the National Academy of Sciences, 2004, 101(suppl 1): 5220-5227.

(2)Su S, Wang Y, Zhang Z, et al. Identifying and tracking topic-level influencers in the microblog streams[J]. Machine Learning, 2018, 107(3): 551-578.

(3)(Probabilistic inference formula):Ling G, Lyu M R, King I. Ratings meet reviews, a combined approach to recommend[C]//Proceedings of the 8th ACM Conference on Recommender systems. ACM, 2014: 105-112.

import com.topic.model.LinkLDA;

public class LinkLDATest {

	public static void main(String args[]) throws Exception{
		LinkLDA linklda = new LinkLDA("data/rawdata_process_link", "gbk", 50, 0.1,
				0.01,0.01, 200, 50, "data/linkldaoutput/");
		linklda.MCMCSampling();
	}

}

Where the constructor method LinkLDA() is:

public LinkLDA(String inputFile, String inputFileCode, int topicNumber,
			double inputAlpha, double inputBeta,double inputGamma, int inputIterations, int inTopWords,
			String outputFileDir)

The example of the input file likes:

457720--578743--643697--840908--874627--975162--1058302--1275106	paper present indoor navigation range strategy monocular camera exploit architectural orthogonality indoor environment introduce method estimate range vehicle state monocular camera visionbased SLAM navigation strategy assume
273266--1065537--1120593--1474359--1976664--2135000	globalisation education increasingly topic discussion university worldwide hand industry university leader emphasise increase awareness influence global marketplace skill graduate time emergence tertiary education export market prompt
...

The output file contains:
在这里插入图片描述

The contents of 'topic_link_LinkLDA_50.txt' like:

Topic:1
2135000 :0.1134694432807372
44875 :0.00726720143952733
891558 :0.0041754331180947285
129986 :0.002629548957378428
798508 :0.002629548957378428
891548 :0.002474960541306798
1760887 :0.0023203721252351675
739898 :0.0023203721252351675
307246 :0.0023203721252351675
34076 :0.0018566068770202774
...

Topic:2
2135000 :0.06079089083918171
369235 :0.017583984276502394
1777208 :0.012677206244147646
392342 :0.007770428211792896
422114 :0.006271134924128945
1777200 :0.0061348355343413125
1777102 :0.004635542246677361
329348 :0.004226644077314466
857174 :0.003954045297739202
207251 :0.003954045297739202
124072 :0.0038177459079515703
...

The contents of 'topic_word_LinkLDA_50.txt' like:

Topic:1
model :0.04919313426495349
distribution :0.031032042220064535
estimate :0.021740932811592357
parameter :0.019003608793232284
probability :0.018661443290937274
estimation :0.016003080542337587
random :0.011923414938050936
function :0.011581249435755926
method :0.010002024040548192
analysis :0.009659858538253182
variable :0.009554576845239334
estimator :0.00931769303595817
...

Topic:2
graph :0.08478070592614391
set :0.02273205662600254
vertex :0.021495890950958215
number :0.01871451818210849
edge :0.017066297282049395
give :0.01401022102985649
result :0.01085113097140989
show :0.01023304813388773
prove :0.009374599748440285
class :0.00896254452342551
degree :0.007692040912963291
n :0.007520351235873802
path :0.007486013300455904
...

The contents of 'doc_topic_LinkLDA_50.txt' like:

0.08243243243243242	0.0013513513513513514	0.02837837837837838 ...
0.28383838383838383	0.00101010101010101	0.00101010101010101 ...

DMM

Collapsed Gibbs Sampling for DMM Reference:(1)Yin J, Wang J. A dirichlet multinomial mixture model-based approach for short text clustering[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2014: 233-242.

(2)Nguyen D Q. jLDADMM: A Java package for the LDA and DMM topic models[J]. arXiv preprint arXiv:1808.03835, 2018.

import com.topic.model.DMM;

public class DMMTest {

	public static void main(String[] args) {
		DMM dmm = new DMM("data/shortdoc.txt", "gbk", 15, 0.1,
				0.01, 500, 50, "data/ldaoutput/");
		dmm.MCMCSampling();

	}

}

Where the constructor method DMM() is:

public DMM(String inputFile, String inputFileCode, int clusterNumber,
			double inputAlpha, double inputBeta, int inputIterations, int inTopWords,
			String outputFileDir)

The example of the input file likes:

iphone crack iphone 
adding support iphone announced 
youtube video guy siri pretty love 
rim made easy switch iphone yeah 
realized ios 
current blackberry user bit disappointed move android iphone 
...

The output file contains:
在这里插入图片描述

The contents of 'DMM_cluster_word_15.txt' like:

Topic:1
science :0.050034954559073204
windows :0.04004793768101468
computer :0.04004793768101468
research :0.04004793768101468
android :0.030060920802956158
search :0.030060920802956158
add :0.030060920802956158
start :0.030060920802956158
shows :0.030060920802956158
improvements :0.030060920802956158
...

Topic:2
iphone :0.06536929406386731
great :0.0523084960491086
ios :0.04577809704172925
loving :0.04577809704172925
time :0.039247698034349895
good :0.039247698034349895
search :0.039247698034349895
sleep :0.03271729902697055
man :0.026186900019591196
facebook :0.026186900019591196
nice :0.026186900019591196
world :0.026186900019591196
helps :0.026186900019591196
paying :0.019656501012211846
...

The contents of 'DMM_doc_cluster15.txt' like:

1
11
9
6
6
6
1
6
7
8
1
0
...

The contents of 'DMM_theta_15.txt' like:

0.052684144818976285
0.06766541822721599
0.07515605493133583
0.07016229712858926
0.10262172284644196
0.06267166042446942
0.10761548064918852
0.04769038701622972
0.06267166042446942
0.050187265917603
0.037702871410736576
0.0651685393258427
0.05518102372034957
0.09762796504369538
0.04769038701622972

DPMM

Collapsed Gibbs Sampling for DPMM Reference:(1)Yin J, Wang J. A model-based approach for text clustering with outlier detection[C]//2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, 2016: 625-636.

(2)https://github.com/junyachen/GSDPMM

This algorithm is similar with DMM. When I implement this algorithm, I the use same data structure between these two algorithms (DMM and DPMM).

import com.topic.model.DPMM;

public class DPMMTest {

	public static void main(String[] args) {
		DPMM dmm = new DPMM("data/shortdoc.txt", "gbk", 5, 0.1,
				0.01, 1500, 50, "data/ldaoutput/");
		dmm.MCMCSampling();

	}

}

Where the constructor method DPMM() is:

public DPMM(String inputFile, String inputFileCode, int initClusterNumber,
			double inputAlpha, double inputBeta, int inputIterations, int inTopWords,
			String outputFileDir)

HDP

Sampling based on the Chinese restaurant franchise

Reference:(1)Teh Y W, Jordan M I, Beal M J, et al. Sharing clusters among related groups: Hierarchical Dirichlet processes[C]//Advances in neural information processing systems. 2005: 1385-1392.

(2)https://github.com/arnim/HDP

import com.topic.model.HDP;

public class HDPTest {

	public static void main(String[] args) {
		HDP hdp = new HDP("data/rawdata_process_lda", "gbk", 10, 1, 0.01,
				0.1, 1000, 50, "data/ldaoutput/");
		hdp.MCMCSampling();

	}

}

Where the constructor method HDP() is:

public HDP(String inputFile, String inputFileCode, int initTopicNumber,
			double inputAlpha, double inputBeta, double inputGamma, int inputIterations, int inTopWords,
			String outputFileDir)

The output file contains:
在这里插入图片描述

The contents of 'HDP_topic_word_36.txt' like:

Topic:1
method :0.030071773821525403
model :0.01782642193628322
function :0.012205604677483528
equation :0.012125307288072103
distribution :0.011643522951603558
parameter :0.011201887309840727
numerical :0.011121589920429302
result :0.01072010297337218
problem :0.010639805583960757
present :0.009957277773963652
propose :0.00975653430043509
...

Topic:2
algorithm :0.06079583823439637
problem :0.050096888430722096
propose :0.025803978876496988
optimization :0.023915928911142702
solution :0.021209723960801567
solve :0.016111989054345
search :0.014790354078597003
result :0.012461759121326719
paper :0.012398824122481576
method :0.011895344131720435
time :0.010573709155972437
show :0.010447839158282152
...

Dual-Sparse Topic Model

Collapsed Variational Bayesian Inference for Dual-Sparse Topic Model

Reference:Lin T, Tian W, Mei Q, et al. The dual-sparse topic model: mining focused topics and focused terms in short text[C]//Proceedings of the 23rd international conference on World wide web. ACM, 2014: 539-550.

import com.topic.model.DualSparseLDA;

public class DualSparseLDATest {

	public static void main(String[] args) {
		DualSparseLDA slda = new DualSparseLDA("data/shortdoc.txt", "gbk", 10, 1.0, 1.0, 1.0, 1.0, 0.1, 1E-12, 0.1, 1E-12, 500, 60, "data/dualsparse/");
		slda.CVBInference();
	}

}

Where the constructor method DualSparseLDA() is:

public DualSparseLDA(String inputFile, String inputFileCode, int topicNumber,
			double inputS, double inputR, double inputX, double inputY, 
			double inputGamma, double inputGamma_bar,double inputPi, double inputPi_bar,
			int inputIterations, int inTopWords,
			String outputFileDir)

The output file contains:

在这里插入图片描述