/AmazingQuant

AmazingQuant——智能投资Lab,为交易而生。包含策略组合研究服务、量化数据服务、指标计算服务、绩效分析服务四大功能模块。

Primary LanguageC++GNU Affero General Public License v3.0AGPL-3.0

AmazingQuant

Github workers GitHub stars GitHub forks

1.简介

AmazingQuant——智能投资Lab,为交易而生。包含策略组合研究服务、量化数据服务、指标计算服务、绩效分析服务四大功能模块。
1.1 策略组合研究服务
四大类策略模型组合的研究体系
(1)选股模型
单因子检测,因子合成,组合权重优化
(2)风险预警模型
事件风险等建立黑白名单模型
(3)择时模型
仓位控制、基差择时、行业风格轮动
(4)T+0模型
满足回测与实盘的策略无缝对接

1.2 量化数据服务
1.2.1 历史数据存储
存储到服务器的mongoDB作为数据服务器,并保存到本地的HDF5,满足策略需求。
(1)基础行情数据
tick、1min、5min、日线等周期的股票、指数、期货行情数据
(2)基本面数据
财务数据
股本数据
(3)行情衍生数据
龙虎榜数据
指数成分股数据
行业板块成分股数据
行业指数日线行情数据

1.2.1 实时行情对接
(1)股票、指数、期货的tick数据实时全推行情
(2)重采样为1min、5min、日线等三个周期数据

1.3 指标计算服务
历史指标计算满足策略研究,实时指标计算满足实盘交易
(1)日线、周线、月线、年线周期等低频指标的历史数据计算,固定存储为HDF5格式,
(2)分钟、tick周期等高频数据指标计算,历史数据计算和实时指标计算两部分

1.4 绩效分析服务
回测数据格式对接,满足策略研究的评价;实盘数据格式对接,满足实盘运行的监控。
1.4.1 净值数据分析
(1)年化波动率,日收益波动率,月收益波动率,该值表明因子对收益率贡献的波动程度
(2)日收益率分布,月收益率分布,正收益天数,负收益天数,日胜率,月胜率,峰度,偏度
(3)最大回撤
(4)夏普比率,calmar比率,特雷诺比率,索提诺比率
(5)beta,跟踪误差,信息比率
1.4.2 交易数据分析
(1)也针对回测的:滑点损失
(2)总交易次数、日均交易次数、胜率(个股从建仓到完全平仓)、平均持仓周期、换手率、交易费用、总交易金额
(3)分每只股票统计,交易数量、金额、时间
1.4.3 持仓数据分析
(1)持仓行业市值、占比
(2)持仓PE,PB等
1.4.4 绩效归因
(1)多因子归因
投资收益分为每个风格(行业)因子收益、特殊收益、日内调仓收益
(2)brinson归因
投资收益分为基准收益和超额收益,其中超额收益分为:资产配置收益、个股选择收益和交互收益
(3)收益分解
市场中性策略,基本分解公式为:总收益=交易收益+选股收益+择时收益+基差收益+交易成本
纯股票策略,基本分解公式为:总收益=交易收益+选股收益+择时收益+基准收益+交易成本

下图是总体框架架构。

  • data_center
    • to_mongoDB 存放行情、财务等各种数据到MongoDB的存储模块
    • get_data 策略中从数据库中取数据的接口模块
  • trade_center
    • mossion_engine 包含下单任务(event_order)和风控(event_risk_management)两部分的engine,分别完成下单前的检查和风控
    • broker_engine 分为回测时的simulate的broker(主要是event_deal)撮合成交和连接实盘交易CTP、xSpeed等接口两部分
  • strategy_center
    • bar_engine 在回测或者交易模式下,用逐K线的方式执行每一根bar的交易逻辑,可在日线、分钟线、分笔下运行
  • analysis_center
    • analysis_engine 对回测形成的交易记录进行分析和可视化,净值、年化收益、alpha、beta、回撤等指标,brison、Fama等经典模型的实现

2.安装配置

  • MongoDB 3.4
    建议使用shard,配置启动项示例
  • pymongo
    python调用MongoDB
  • talib
    技术指标计算库
  • anaconda
    python 3.5 的版本,如果大于3.5的版本,ctp的接口暂时不能用,因为编译问题,后续可以解决
  • Linux Ubuntu
    开发环境是ubuntu,当然也可以在windows下用,但是数据库的配置和ctp等交易接口需要重新做
  • 安装AmazingQuant pip install AmazingQuant 直接安装

3.策略编写

#-*- coding: utf-8 -*-

# ------------------------------
# @Time    : 2019/11/14
# @Author  : gao
# @File    : example_strategy.py.py
# @Project : AmazingQuant
# ------------------------------
import time

from AmazingQuant.utils.performance_test import Timer
# import strategy基类
from AmazingQuant.strategy_center.strategy import *

# 取各种数据
from AmazingQuant.data_center.api_data.get_index_member import GetIndexMember
from AmazingQuant.indicator_center.save_get_indicator import SaveGetIndicator
from AmazingQuant.utils.logger import Logger
from AmazingQuant.environment import Environment


# 继承strategy基类
class MaStrategy(StrategyBase):
    def __init__(self, strategy_name='ma_strategy'):
        """
        用户定义类变量
        取本地数据
        :param strategy_name:
        """
        super().__init__(strategy_name=strategy_name)

        # 取指数成分股实例
        self.index_member_obj = GetIndexMember()
        # 取K线数据实例
        self.data_class = GetKlineData()
        # 取指标实例
        self.indicator = SaveGetIndicator()

        # 取指标数据
        self.ma5 = self.indicator.get_indicator('ma5')
        self.ma10 = self.indicator.get_indicator('ma10')
        self.now = time.time()
        Environment.logger = Logger(strategy_name)

    def initialize(self):
        # 设置运行模式,回测或者交易
        self.run_mode = RunMode.BACKTESTING.value
        # 设置回测资金账号
        self.account = ['test0']
        # 设置回测资金账号资金量
        self.capital = {'test0': 2000000}
        # 设置回测基准
        self.benchmark = '000300.SH'
        # 设置复权方式
        self.rights_adjustment = RightsAdjustment.FROWARD.value
        # 设置回测起止时间
        self.start = datetime(2018, 1, 1)
        self.end = datetime(2019, 1, 1)
        # 设置运行周期
        self.period = 'daily'
        self.index_member_obj.get_all_index_members()
        _, index_members_all = self.index_member_obj.get_index_members('000300.SH')
        self.universe = index_members_all

        # 设置在运行前是否缓存日线,分钟线等各个周期数据
        self.daily_data_cache = True
        Environment.logger.info(self.universe)

        # 回测滑点设置,按固定值0.01,20-0.01 = 19.99;百分比0.01,20*(1-0.01) = 19.98;平仓时用'+'
        self.set_slippage(stock_type=StockType.STOCK.value, slippage_type=SlippageType.SLIPPAGE_FIX.value, value=0.01)

        # 回测股票手续费和印花税,卖出印花税,千分之一;开仓手续费,万分之三;平仓手续费,万分之三,最低手续费,5元
        # 沪市,卖出有万分之二的过户费,加入到卖出手续费
        self.set_commission(stock_type=StockType.STOCK_SH.value, tax=0.001, open_commission=0.0003,
                            close_commission=0.00032,
                            close_today_commission=0, min_commission=5)
        # 深市不加过户费
        self.set_commission(stock_type=StockType.STOCK_SZ.value, tax=0.001, open_commission=0.0003,
                            close_commission=0.0003,
                            close_today_commission=0, min_commission=5)

    def handle_bar(self, event):
        Environment.logger.info('self.time_tag', self.time_tag, datetime.now(), (time.time() - self.now) * 1000)
        Environment.logger.debug(len(Environment.bar_position_data_list))
        # 取当前bar的持仓情况
        with Timer(True):
            available_position_dict = {}
            for position in Environment.bar_position_data_list:
                available_position_dict[
                    position.instrument + '.' + position.exchange] = position.position - position.frozen
            index_member_list = self.index_member_obj.get_index_member_in_date(self.time_tag)

            close_price_all = self.data_class.get_market_data(Environment.daily_data, stock_code=index_member_list,
                                                              field=['close'],
                                                              start=self.time_tag, end=self.time_tag)
            # 循环遍历股票池
            for stock in index_member_list:
                # 取当前股票的收盘价
                close_price = close_price_all['close'][stock]
                if close_price:
                    ma5 = self.ma5[stock][self.time_tag]
                    ma20 = self.ma10[stock][self.time_tag]
                    if ma5 and ma20:
                        # 如果5日均线突破20日均线,并且没有持仓,则买入这只股票100股,以收盘价为指定价交易
                        if ma5 > ma20 and stock not in available_position_dict.keys() and stock in index_member_list:
                            self.trade.order_shares(stock_code=stock, shares=100, price_type='fix',
                                                    order_price=close_price,
                                                    account_id=self.account[0])
                            Environment.logger.info('buy', stock, -1, 'fix', close_price, self.account)
                        # 如果20日均线突破5日均线,并且有持仓,则卖出这只股票100股,以收盘价为指定价交易
                        elif ma5 < ma20 and stock in available_position_dict.keys():
                            self.trade.order_shares(stock_code=stock, shares=-100, price_type='fix',
                                                    order_price=close_price,
                                                    account_id=self.account[0])
                            Environment.logger.info('sell', stock, -1, 'fix', close_price, self.account)
            for stock in available_position_dict.keys():
                if stock not in index_member_list:
                    Trade(self).order_shares(stock_code=stock, shares=-100, price_type='fix',
                                             order_price=close_price,
                                             account_id=self.account[0])
                    Environment.logger.info('sell not in index_member_list', stock, -1, 'fix', close_price,
                                            self.account)
        self.now = time.time()


if __name__ == '__main__':
    # 测试运行完整个策略所需时间,沪深300动态股票池,一年数据,均线策略,10s完成,10S绩效分析
    with Timer(True):
        # 运行策略,设置是否保存委托,成交,资金,持仓
        ma_strategy = MaStrategy()
        ma_strategy.run(save_trade_record=True)

4.回测结果分析

  • 自动生成回测结果
    产生的委托成交资金持仓的cvs文件写入到策略所在文件夹
  • 自动生成回测报告
    回测报告是html格式,可在浏览器中打开查看,效果如下图:

5.已实现和即将实现的功能

  • 已实现
    • 数据库搭建
    • 读取数据
    • 策略运行回测
    • 回测交易记录的保存和分析
    • 实盘CTP接口的封装
  • 即将实现
    • 各种数据的对接
      例如股票的分钟数据、股票财务数据、股票板块成分股、期货分钟数据、日线数据等
    • CTP等交易接口与broker_engine对接
      CTP、xSpeed等
    • 对回测区间的每一根bar的交易和持仓情况可视化
    • 回测分析模块的丰富
      增加brison、FAMA等各种绩效归因模型的分析和可视化

6.联系方式

欢迎加qq群讨论: 788279189 qq群链接
我的qq:37475036