In this project, I generated my own Seinfeld TV scripts using RNNs. I used part of the Seinfled dataset of scripts from 9 seasons. The Neural Network I generated a new, "fake" TV script, based on patterns it reconginzes in this training data.
- Clone the repository and navigate to the downloaded folder.
git clone https://github.com/gargarchit/TV_Script_Generator.git
cd TV-Script-Generator
- Open the
dlnd_tv_script_generation.ipynb
file. Of course, you can find HTML version of the file.
jupyter notebook dlnd_tv_script_generation.ipynb
- Read and follow the instructions! This repository already includes the dataset in a form of txt flie in
data
folder.
- Get the Data
- Explore the Data
- Implement Pre-processing Functions
- Lookup Table
- Tokenize Punctuation
- Pre-process all the data and save it
- Check Access to GPU
- Input
- Batching
- Test your dataloader
- Sizes
- Values
- Build the Neural Network
- Define forward and backpropagation
- Neural Network Training
- Train Loop
- Hyperparameters
- Train
- Generate TV Script
- Generate text
- Generate a new script
Layer |
Input Dimension |
Output Dimension |
Embedding |
vocab_size |
embedding_dim |
LSTM |
embedding_dim |
hidden_dim |
FC |
hidden_dim |
output_size |
Data Parameter |
Value |
sequence_length |
15 |
batch_size |
256 |
Training Parameter |
Value |
num_epochs |
15 |
learning_rate |
0.0005 |
embedding_dim |
256 |
hidden_dim |
256 |
n_layers(Number of RNN Layers) |
2 |
The list below represents main libraries and its objects for the project.