A short description of Multimodal Product Data Classification.



Table of Contents
  1. About The Project
  2. Getting Started
  3. Project Organization
  4. Acknowledgements
  5. Contact

About The Project

A short description of Multimodal Product Data Classification.

(back to top)

Built With

Getting Started

To get a local copy up and running follow these simple steps.

Prerequisites

  • Python

Installation

  1. Clone the repo
    git clone https://github.com/gatienc/Multimodal Product Data Classification
  2. Install dependencies
    pip install -r requirements.txt
    (or other dependencies manager)

(back to top)

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A MkDocs documentation
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │  
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │  
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
    │   │                 predictions
    │   ├── predict_model.py
    │   └── train_model.py
    │
    └── visualization  <- Scripts to create exploratory and results oriented visualizations
        └── visualize.py

Acknowledgements

Project based on my version of the cookiecutter data science project template

Contact

Gatien Chenu - gatien_dev@chenu.me

Project Link: [https://github.com/gatienc/# Multimodal Product Data Classification /issues](https://github.com/gatienc/# Multimodal Product Data Classification /issuese)

(back to top)

[contributors-url]: https://github.com/gatienc/# Multimodal Product Data Classification /graphs/contributors [forks-shield]: https://img.shields.io/github/forks/othneildrew/Best-README-Template.svg?style=for-the-badge [forks-url]: https://github.com/gatienc/# Multimodal Product Data Classification /network/members [stars-shield]: https://img.shields.io/github/stars/othneildrew/Best-README-Template.svg?style=for-the-badge [stars-url]: https://github.com/gatienc/# Multimodal Product Data Classification /stargazers [issues-shield]: https://img.shields.io/github/issues/othneildrew/Best-README-Template.svg?style=for-the-badge [issues-url]: https://github.com/gatienc/# Multimodal Product Data Classification /issues [license-shield]: https://img.shields.io/github/license/othneildrew/Best-README-Template.svg?style=for-the-badge [license-url]: https://github.com/gatienc/# Multimodal Product Data Classification /blob/master/LICENSE.txt [linkedin-shield]: https://img.shields.io/badge/-LinkedIn-black.svg?style=for-the-badge&logo=linkedin&colorB=555 [linkedin-url]: https://linkedin.com/in/gatien-chenu [product-screenshot]: images/screenshot.png [Next.js]: https://img.shields.io/badge/next.js-000000?style=for-the-badge&logo=nextdotjs&logoColor=white [Next-url]: https://nextjs.org/ [React.js]: https://img.shields.io/badge/React-20232A?style=for-the-badge&logo=react&logoColor=61DAFB [React-url]: https://reactjs.org/ [Vue.js]: https://img.shields.io/badge/Vue.js-35495E?style=for-the-badge&logo=vuedotjs&logoColor=4FC08D [Vue-url]: https://vuejs.org/ [Angular.io]: https://img.shields.io/badge/Angular-DD0031?style=for-the-badge&logo=angular&logoColor=white [Angular-url]: https://angular.io/ [Svelte.dev]: https://img.shields.io/badge/Svelte-4A4A55?style=for-the-badge&logo=svelte&logoColor=FF3E00 [Svelte-url]: https://svelte.dev/ [Laravel.com]: https://img.shields.io/badge/Laravel-FF2D20?style=for-the-badge&logo=laravel&logoColor=white [Laravel-url]: https://laravel.com [Bootstrap.com]: https://img.shields.io/badge/Bootstrap-563D7C?style=for-the-badge&logo=bootstrap&logoColor=white [Bootstrap-url]: https://getbootstrap.com [JQuery.com]: https://img.shields.io/badge/jQuery-0769AD?style=for-the-badge&logo=jquery&logoColor=white [JQuery-url]: https://jquery.com [OpenGl-url]: https://www.opengl.org/ [Pygame-url]: https://www.pygame.org/ [Python-url]: https://www.python.org/ [Poetry-url]: https://python-poetry.org/