/L-GSO

Local Generative Surrogate Optimisation algorithm

Primary LanguagePython

drawing

Black-Box Optimization with Local Generative Surrogates

This repository is an official implementation of the paper: Black-Box Optimization with Local Generative Surrogates, ArXiv: https://arxiv.org/abs/2002.04632.

Installing dependencies:

  • We use the comet.ml to log experiments. Please, register on the platform to be able to run our code.
  • Then create an API key:
    • comet.ml->profile->settings->generate API key
    • create file ~/.comet.config
    • set COMET_API_KEY=GENERATED_KEY
  • create an environment with conda yml file: conda env create -f conda_env.yml.

In case you also want to check FFJORD you need to install

pip install git+https://github.com/rtqichen/torchdiffeq

To reproduce experiments:

  • activate environment with conda activate lgso.
  • cd /L-GSO/local_train.
  • Set the parameters in the correspondong *_config.py file. Execute the commands below for the particular experiment.

Dont forget to set the parameters of the used optimisers to the values, presented in the tables below. (GAN, FFJORD, Void and LTS models).

Dont forget to set parameters in gan_config.py (or ffjord_config.py) and optimizer_config.py before running the commands. Otherwise, the code might crash.

You can find the exact commands to run experiments in the file: run_commands.txt.

GAN surrogate parameters

The parameters are set in gan_config.py.

Simulator Model task psi_dim y_dim x_dim noise_dim lr batch_size epochs iters_discriminator iters_generator instance_noise_std dis_output_dim grad_penalty gp_reg_coeff
Three Hump Model CRAMER 2 1 2 150 8e-4 512 15 1 1 0.01 256 True 10
Rosenbrock 10dim CRAMER 10 1 1 150 8e-4 512 15 1 1 0.01 256 True 10
Submanifold Rosenbrock 100dim CRAMER 100 1 1 150 8e-4 512 15 1 1 0.01 256 True 10
Nonlinear Submanifold Hump 40dim CRAMER 40 1 1 150 8e-4 512 15 1 1 0.01 256 True 10
BostonNN CRAMER 91 1 13 150 8e-4 512 15 1 1 0.01 256 True 10

Void (LAX) baseline parameters:

The parameters are set in void/void_config.py. psi_dim, y_dim, x_dim are set as above. The rest left unchanged.

Learning to simulate (LTS) baseline parameters:

The parameters are set in learn_to_sim/lts_config.py. y_dim, x_dim are set as above. The rest left unchanged.

Optimizer parameters:

Simulator Model lr torch_model num_repetitions
Three Hump Model 0.1 Adam 10000
Rosenbrock 10dim 0.1 Adam 10000
Rosenbrock submanifold 100dim 0.1 Adam 10000
Three Hump submanifold 40dim 0.1 Adam 10000
Neural network optimisation 0.1 Adam 10000

To add your own function for optimisation:

Add a new class to model.py, inhereted from YModel and at the runtime, specify --optimized_function YourClassName. For example, see Rosenbrock class.