/pytorch-pretrained-gluonresnet

Well trained MXNet Gluon Model Zoo ResNet/ResNeXt/SE-ResNeXt ported to PyTorch

Primary LanguagePython

pytorch-pretrained-gluonresnet

A stand-alone version of the pretrained MxNet Gluon ResNet models ported to Pytorch. Currently part of my model collection (https://github.com/rwightman/pytorch-image-models/blob/master/models/gluon_resnet.py)

This model covers all variants of ResNet, ResNeXt, SE-ResNeXt, and SENet found in the gluon model zoo (https://gluon-cv.mxnet.io/model_zoo/classification.html, https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/model_zoo.py) that

  • have stride in 3x3 conv layer of bottleneck
  • have conv-bn-act ordering

Included ResNet variants are:

  • v1b - 7x7 stem, stem_width=64, same as torchvision ResNet (checkpoint compatible), or NVIDIA ResNet 'v1.5'
  • v1c - 3 layer deep 3x3 stem, stem_width = 32
  • v1d - 3 layer deep 3x3 stem, stem_width = 32, average pool in downsample
  • v1e - 3 layer deep 3x3 stem, stem_width = 64, average pool in downsample *no pretrained weights available
  • v1s - 3 layer deep 3x3 stem, stem_width = 64

ResNeXt is standard and checkpoint compatible with torchvision pretrained models. 7x7 stem, stem_width = 64, standard cardinality and base width calcs

SE-ResNeXt is standard. 7x7 stem, stem_width = 64, checkpoints are not compatible with Cadene pretrained, but could be with key mapping

SENet-154 is standard. 3 layer deep 3x3 stem (same as v1c-v1s), stem_width = 64, cardinality=64, reduction by 2 on width of first bottleneck convolution, 3x3 downsample convs after first block

Original ResNet-V1, ResNet-V2 (bn-act-conv), and SE-ResNet (stride in first bottleneck conv) are NOT supported.

Results

model top1 (err) top5 (err) param_count
gluon_resnet18_v1b 70.830 (29.170) 89.756 (10.244) 11.69
gluon_resnet34_v1b 74.580 (25.420) 91.988 (8.012) 21.8
gluon_resnet50_v1b 77.578 (22.422) 93.718 (6.282) 25.56
gluon_resnet50_v1c 78.010 (21.990) 93.988 (6.012) 25.58
gluon_resnet50_v1s 78.712 (21.288) 94.242 (5.758) 25.68
gluon_resnet50_v1d 79.074 (20.926) 94.476 (5.524) 25.58
gluon_resnet101_v1b 79.304 (20.696) 94.524 (5.476) 44.55
gluon_resnext50_32x4d 79.356 (20.644) 94.424 (5.576) 25.03
gluon_resnet101_v1c 79.544 (20.456) 94.586 (5.414) 44.57
gluon_resnet152_v1b 79.692 (20.308) 94.738 (5.262) 60.19
gluon_seresnext50_32x4d 79.912 (20.088) 94.818 (5.182) 27.56
gluon_resnet152_v1c 79.916 (20.084) 94.842 (5.158) 60.21
gluon_resnet101_v1s 80.300 (19.700) 95.150 (4.850) 44.67
gluon_resnext101_32x4d 80.334 (19.666) 94.926 (5.074) 44.18
gluon_resnet101_v1d 80.424 (19.576) 95.020 (4.980) 44.57
gluon_resnet152_v1d 80.470 (19.530) 95.206 (4.794) 60.21
gluon_resnext101_64x4d 80.602 (19.398) 94.994 (5.006) 83.46
gluon_seresnext101_64x4d 80.890 (19.110) 95.304 (4.696) 88.23
gluon_seresnext101_32x4d 80.902 (19.098) 95.294 (4.706) 48.96
gluon_resnet152_v1s 81.012 (18.988) 95.416 (4.584) 60.32
gluon_senet154 81.224 (18.776) 95.356 (4.644) 115.09

PyTorch Hub

Models can be access via the PyTorch Hub API

>>> torch.hub.list('rwightman/pytorch-pretrained-gluonresnet')
['gluon_resnet18_v1b', ...]
>>> model = torch.hub.load('rwightman/pytorch-pretrained-gluonresnet', 'gluon_resnet50_v1d', pretrained=True)
>>> model.eval()
>>> output = model(torch.randn(1,3,224,224))