/simsity

Super Simple Similarities Service

Primary LanguagePythonMIT LicenseMIT

simsity

Simsity is a Super Simple Similarities Service[tm].
It's all about building a neighborhood. Literally!


This repository contains simple tools to help in similarity retrieval scenarios by making a convenient wrapper around encoding strategies as well as nearest neighbor approaches. Typical usecases include early stage bulk labelling and duplication discovery.

Install

You can install simsity via pip.

python -m pip install simsity

Quickstart

This is the basic setup for this package.

from simsity.service import Service
from simsity.datasets import fetch_clinc
from simsity.indexer import PyNNDescentIndexer
from simsity.preprocessing import Identity, ColumnLister

from sklearn.pipeline import make_pipeline
from sklearn.feature_extraction.text import CountVectorizer

# The encoder defines how we encode the data going in.
encoder = make_pipeline(
    ColumnLister(column="text"),
    CountVectorizer()
)

# The indexer handles the nearest neighbor lookup.
indexer = PyNNDescentIndexer(metric="euclidean", n_neighbors=2)

# The service combines the two into a single object.
service_clinc = Service(
    encoder=encoder,
    indexer=indexer,
)

# We can now train the service using this data.
df_clinc = fetch_clinc()

# Important for later: we're only passing the 'text' column to encode
service_clinc.train_from_dataf(df_clinc, features=["text"])

# Query the datapoints
# Note that the keyword argument here refers to 'text'-column
service.query(text="give me directions", n_neighbors=20)

If you'd like you can also save and load the service on disk.

# Save the entire system
service.save("/tmp/simple-model")

# You can also load the model now.
reloaded = Service.load("/tmp/simple-model")

You could even run it as a webservice if you were so inclined.

reloaded.serve(host='0.0.0.0', port=8080)

You can now POST to http://0.0.0.0:8080/query with payload:

{"query": {"text": "hello there"}, "n_neighbors": 20}

Note that the query content here refers to "text"-column once again.

Examples

Check the examples folder for some interesting use-cases and tool integrations.

In particular: