/albert-chinese-large-webqa

基于百度webqa与dureader数据集训练的Albert Large QA模型

Primary LanguageJupyter NotebookApache License 2.0Apache-2.0

albert-chinese-large-webqa

基于百度webqa与dureader数据集训练的Albert Large QA模型

数据来源

  • 百度WebQA 1.0数据集
  • 百度Dureader数据集

训练方法

整理后形成类似squad数据集的形式,包含训练数据705139条,验证数据69638条。基于google提供的albert chinese large模型进行finetune。最终f1约0.7

  • 参数
    • learning_rate 1e-5
    • max_seq_length 512
    • max_query_length 50
    • max_answer_length 300
    • doc_stride 256
    • num_train_epochs 2
    • warmup_steps 1000
    • per_gpu_train_batch_size 8
    • gradient_accumulation_steps 3
    • n_gpu 2 (Nvidia Tesla P100)

Metric

metric

使用方法

from transformers import AutoModelForQuestionAnswering, BertTokenizer

model = AutoModelForQuestionAnswering.from_pretrained('./model/albert-chinese-large-qa')
tokenizer = BertTokenizer.from_pretrained('./model/albert-chinese-large-qa')

# or use transformers repo
model = AutoModelForQuestionAnswering.from_pretrained('wptoux/albert-chinese-large-qa')
tokenizer = BertTokenizer.from_pretrained('wptoux/albert-chinese-large-qa')

存在的问题

transformers实现的SquadExample类缺乏对中文的支持,导致其推理结果会存在问题,所以Metric中的F1和Exact会比真实结果低。但是这个不会影响到训练。