/nkn-sdk-rust-giraffekey

Rust implementation of NKN client and wallet SDK

Primary LanguageRustApache License 2.0Apache-2.0

nkn-sdk-rust

GitHub license

Rust implementation of NKN client and wallet SDK. The SDK consists of a few components:

  • NKN Client: Send and receive data for free between any NKN clients regardless their network condition without setting up a server or relying on any third party services. Data are end to end encrypted by default. Typically you might want to use multiclient instead of using client directly.

  • NKN MultiClient: Send and receive data using multiple NKN clients concurrently to improve reliability and latency. In addition, it supports session mode, a reliable streaming protocol similar to TCP based on ncp.

  • NKN Wallet: Wallet SDK for NKN blockchain. It can be used to create wallet, transfer token to NKN wallet address, register name, subscribe to topic, etc.

Advantages of using NKN client/multiclient for data transmission:

  • Network agnostic: Neither sender nor receiver needs to have public IP address or port forwarding. NKN clients only establish outbound (websocket) connections, so Internet access is all they need. This is ideal for client side peer to peer communication.

  • Top level security: All data are end to end authenticated and encrypted. No one else in the world except sender and receiver can see or modify the content of the data. The same public key is used for both routing and encryption, eliminating the possibility of man in the middle attack.

  • Decent performance: By aggregating multiple overlay paths concurrently, multiclient can get ~100ms end to end latency and 10+mbps end to end session throughput between international devices.

  • Everything is free, open source and decentralized. (If you are curious, node relay traffic for clients for free to earn mining rewards in NKN blockchain.)

Documentation

Not created yet.

Usage

Client

NKN Client provides low level p2p messaging through NKN network. For most applications, it's more suitable to use multiclient (see multiclient section below) for better reliability, lower latency, and session mode support.

Create a client with a generated key pair:

let account = Account::random().unwrap();
let client = Client::new(account, None, ClientConfig::default());

Or with an identifier (used to distinguish different clients sharing the same key pair):

let client = Client::new(account, Some("identifier"), ClientConfig::default());

Get client key pair:

println!("{:?}{:?}", account.seed(), account.public_key());

Create a client using an existing secret seed:

let seed = hex::decode("039e481266e5a05168c1d834a94db512dbc235877f150c5a3cc1e3903672c673").unwrap();
let account = Account::new(seed).unwrap();
let client = Client::new(&account, Some("identifier"), ClientConfig::default());

Secret seed should be kept SECRET! Never put it in version control system like here.

By default the client will use bootstrap RPC server (for getting node address) provided by NKN. Any NKN full node can serve as a bootstrap RPC server. To create a client using customized bootstrap RPC server:

let config = ClientConfig {
	rpc_server_address: vec!["https://ip:port", "https://ip2:port2"],
	..ClientConfig::default()
};
let client = Client::new(&account, Some("identifier"), config);

Get client NKN address, which is used to receive data from other clients:

println!("{:?}", client.address());

Listen for connection established:

client.wait_for_connect();
println!("Connection opened.");

Send text message to other clients:

client.send(&["another client address"], "hello world!".as_bytes(), MessageConfig::default());

You can also send byte array directly:

client.send(&["another client address"], &[1u8, 2u8, 3u8, 4u8, 5u8], MessageConfig::default());

Or publish a message to a specified topic (see wallet section for subscribing to topics):

client.publish("topic", "hello world!".as_bytes(), MessageConfig::default());

Receive data from other clients:

let msg = client.wait_for_message();
println!("Receive message from {:?}: {:?}", msg.source(), msg.data());
msg.reply("response".as_bytes());

Get 100 subscribers of specified topic starting from 0 offset, including those in tx pool (fetch meta):

let subscribers = client.subscribers("topic", 0, 100, true, true);
println!("{:?} {:?}", subscribers.map(), subscribers.tx_pool_map());

Get subscription:

let subscription = client.subscription("topic", "identifier.publickey");
println!("{:?}", subscription);

Multiclient

Multiclient creates multiple client instances by adding identifier prefix (__0__., __1__., __2__., ...) to a nkn address and send/receive packets concurrently. This will greatly increase reliability and reduce latency at the cost of more bandwidth usage (proportional to the number of clients).

Multiclient basically has the same API as client, except for a few more initial configurations:

let num_sub_clients = 3;
let original_client = false;
let multiclient = MultiClient::new(&account, identifier, numSubClient, originalClient);

where original_client controls whether a client with original identifier (without adding any additional identifier prefix) will be created, and num_sub_clients controls how many sub-clients to create by adding prefix __0__., __1__., __2__., etc. Using original_client == true and num_sub_clients == 0 is equivalent to using a standard client without any modification to the identifier. Note that if you use original_client == true and num_sub_clients is greater than 0, your identifier should not starts with __X__ where X is any number, otherwise you may end up with identifier collision.

Any additional options will be passed to NKN client.

Session

Multiclient supports a reliable transmit protocol called session. It will be responsible for retransmission and ordering just like TCP. It uses multiple clients to send and receive data in multiple path to achieve better throughput. Unlike regular multiclient message, no redundant data is sent unless packet loss.

Any multiclient can start listening for incoming session where the remote address match any of the given regexp:

let multiclient = MultiClient::new(...);
// Accepting any address, equivalent to multiclient.listen(&[".*"])
multiclient.listen(&[]);
// Only accepting pubkey 25d660916021ab1d182fb6b52d666b47a0f181ed68cf52a056041bdcf4faaf99 but with any identifiers
multiclient.listen(&["25d660916021ab1d182fb6b52d666b47a0f181ed68cf52a056041bdcf4faaf99$"]);
// Only accepting address alice.25d660916021ab1d182fb6b52d666b47a0f181ed68cf52a056041bdcf4faaf99
multiclient.listen(&["^alice\\.25d660916021ab1d182fb6b52d666b47a0f181ed68cf52a056041bdcf4faaf99$"]);

Then it can start accepting sessions:

let session = multiclient.accept();

On the other hand, any multiclient can dial a session to a remote NKN address:

let session = multiclient.dial("another nkn address");

Read and write to session:

let data = session.read();
let buf = [0u8; 1024];
session.write(&buf);

Wallet

Create wallet SDK:

let account = Account::random().unwrap();
let config = WalletConfig {
	password: "password".into(),
	..WalletConfig::default()
};
let wallet = Wallet::new(&account, config);

By default the wallet will use RPC server provided by nkn.org. Any NKN full node can serve as a RPC server. To create a wallet using customized RPC server:

let config = WalletConfig {
	password: "password".into(),
	rpc_server_address: vec!["https://ip:port", "https://ip2:port2"],
	..WalletConfig::default()
};
let wallet = Wallet::new(&account, config);

Export wallet to JSON string, where sensitive contents are encrypted by password provided in config:

let wallet_json = wallet.to_json();

Load wallet from JSON string, note that the password needs to be the same as the one provided when creating wallet:

let config = WalletConfig {
	password: "password".into(),
	..WalletConfig::default()
};
let wallet = Wallet::from_json(wallet_json, config);

Verify whether an address is a valid NKN wallet address:

let is_valid = Wallet::verify_wallet_address(wallet.address());

Verify password of the wallet:

let is_valid = wallet.verify_password("password");

Query asset balance for this wallet:

let balance = wallet.balance();

Query asset balance for address:

let balance = wallet.balance_by_address("NKNxxxxx");

Transfer asset to some address:

let tx_hash = wallet.transfer(account.wallet_address(), string_to_amount("100"), TransactionConfig::default());

Open nano pay channel to specified address:

// you can pass channel duration (in unit of blocks) after address and txn fee
// after expired new channel (with new id) will be created under-the-hood
// this means that receiver need to claim old channel and reset amount calculation
let np = wallet.create_nano_pay(address, string_to_amount("0"), 4320);

Increment channel balance by 100 NKN:

let tx = np.increment_amount(string_to_amount("100"));

Then you can pass the transaction to receiver, who can send transaction to on-chain later:

let tx_hash = wallet.send_raw_transaction(tx);

Register name for this wallet:

let tx_hash = wallet.register_name("somename", TransactionConfig::default());

Delete name for this wallet:

let tx_hash = wallet.delete_name("somename", TransactionConfig::default());

Subscribe to specified topic for this wallet for next 100 blocks:

let tx_hash = wallet.subscribe("identifier", "topic", 100, "meta", TransactionConfig::default());

Unsubscribe from specified topic:

let tx_hash = wallet.unsubscribe("identifier", "topic", TransactionConfig::default());

Contributing

Can I submit a bug, suggestion or feature request?

Yes. Please open an issue for that.

Can I contribute patches?

Yes, we appreciate your help! To make contributions, please fork the repo, push your changes to the forked repo with signed-off commits, and open a pull request here.

Please sign off your commit. This means adding a line "Signed-off-by: Name " at the end of each commit, indicating that you wrote the code and have the right to pass it on as an open source patch. This can be done automatically by adding -s when committing:

git commit -s

Community