Python logging library to emit JSON log that can be easily indexed and searchable by logging infrastructure such as ELK, EFK
If you're using Cloud Foundry, it worth to check out the library SAP/cf-python-logging-support which I'm also original author.
- Features
- Usage
2.1 Non-web application log
2.2 Web application log
2.3 Get current correlation-id
2.4 Log extra properties
2.5 Root logger
2.6 Custom log formatter - Configuration
- Python References
- Framework support plugin development
- FAQ & Troubleshooting
- References
- Emit JSON logs (format detail)
- Auto extract correlation-id for distributed tracing [1]
- Lightweight, no dependencies, minimal configuration needed (1 LoC to get it working)
- Fully compatible with Python logging module. Support both Python 2.7.x and 3.x
- Support HTTP request instrumentation. Built in support for Flask, Sanic, Quart, Connexion. Extensible to support other web frameworks. PR welcome 😃 .
- Support inject arbitrary extra properties to JSON log message.
Install by running this command:
pip install json-logging
By default log will be emitted in normal format to ease the local development. To enable it on production set either json_logging.ENABLE_JSON_LOGGING or ENABLE_JSON_LOGGING environment variable to true.
To configure, call json_logging.init_< framework_name >(). Once configured library will try to configure all loggers (existing and newly created) to emit log in JSON format.
See following use cases for more detail.
TODO: update guide on how to use ELK stack to view log
This mode don't support correlation-id.
import json_logging, logging, sys
# log is initialized without a web framework name
json_logging.ENABLE_JSON_LOGGING = True
json_logging.init_non_web()
logger = logging.getLogger("test-logger")
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
logger.info("test logging statement")
import datetime, logging, sys, json_logging, flask
app = flask.Flask(__name__)
json_logging.ENABLE_JSON_LOGGING = True
json_logging.init_flask()
json_logging.init_request_instrument(app)
# init the logger as usual
logger = logging.getLogger("test-logger")
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
@app.route('/')
def home():
logger.info("test log statement")
return "Hello world : " + str(datetime.datetime.now())
if __name__ == "__main__":
app.run(host='0.0.0.0', port=int(5000), use_reloader=False)
import logging, sys, json_logging, sanic
app = sanic.Sanic()
json_logging.ENABLE_JSON_LOGGING = True
json_logging.init_sanic()
json_logging.init_request_instrument(app)
# init the logger as usual
logger = logging.getLogger("sanic-integration-test-app")
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
@app.route("/")
async def home(request):
logger.info("test log statement")
return sanic.response.text("hello world")
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8000)
import asyncio, logging, sys, json_logging, quart
app = quart.Quart(__name__)
json_logging.ENABLE_JSON_LOGGING = True
json_logging.init_quart()
json_logging.init_request_instrument(app)
# init the logger as usual
logger = logging.getLogger("test logger")
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
@app.route('/')
async def home():
logger.info("test log statement")
logger.info("test log statement", extra={'props': {"extra_property": 'extra_value'}})
return "Hello world"
if __name__ == "__main__":
loop = asyncio.get_event_loop()
app.run(host='0.0.0.0', port=int(5000), use_reloader=False, loop=loop)
import datetime, logging, sys, json_logging, connexion
app = connexion.FlaskApp(__name__)
json_logging.ENABLE_JSON_LOGGING = True
json_logging.init_connexion()
json_logging.init_request_instrument(app)
app.add_api('api.yaml')
# init the logger as usual
logger = logging.getLogger("test-logger")
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler(sys.stdout))
if __name__ == "__main__":
app.run()
Current request correlation-id can be retrieved and pass to downstream services call as follow:
correlation_id = json_logging.get_correlation_id()
# use correlation id for downstream service calls here
In request context, if one is not present, a new one might be generated depends on CREATE_CORRELATION_ID_IF_NOT_EXISTS setting value.
Extra property can be added to logging statement as follow:
logger.info("test log statement", extra = {'props' : {'extra_property' : 'extra_value'}})
If you want to use root logger as main logger to emit log. Made sure you call config_root_logger() after initialize root logger (by logging.basicConfig() or logging.getLogger('root')) [2]
logging.basicConfig()
json_logging.config_root_logger()
Customer JSON log formatter can be passed to init method. see example for more detail: https://github.com/thangbn/json-logging-python/blob/master/example/custom_log_format.py
logging library can be configured by setting the value in json_logging, all configuration must be placed before json_logging.init method call
Name | Description | Default value |
---|---|---|
ENABLE_JSON_LOGGING | Whether to enable JSON logging mode.Can be set as an environment variable, enable when set to to either one in following list (case-insensitive) ['true', '1', 'y', 'yes'] | false |
ENABLE_JSON_LOGGING_DEBUG | Whether to enable debug logging for this library for development purpose. | true |
CORRELATION_ID_HEADERS | List of HTTP headers that will be used to look for correlation-id value. HTTP headers will be searched one by one according to list order | ['X-Correlation-ID','X-Request-ID'] |
EMPTY_VALUE | Default value when a logging record property is None | '-' |
CORRELATION_ID_GENERATOR | function to generate unique correlation-id | uuid.uuid1 |
JSON_SERIALIZER | function to encode object to JSON | json.dumps |
COMPONENT_ID | Uniquely identifies the software component that has processed the current request | EMPTY_VALUE |
COMPONENT_NAME | A human-friendly name representing the software component | EMPTY_VALUE |
COMPONENT_INSTANCE_INDEX | Instance's index of horizontally scaled service | 0 |
CREATE_CORRELATION_ID_IF_NOT_EXISTS | Whether to generate a new correlation-id in case one is not present | True |
TODO: update Python API docs on Github page
To add support for a new web framework, you need to extend following classes in framework_base and register support using json_logging.register_framework_support method:
Class | Description | Mandatory |
---|---|---|
RequestAdapter | Helper class help to extract logging-relevant information from HTTP request object | no |
ResponseAdapter | Helper class help to extract logging-relevant information from HTTP response object | yes |
FrameworkConfigurator | Class to perform logging configuration for given framework as needed | no |
AppRequestInstrumentationConfigurator | Class to perform request instrumentation logging configuration | no |
Take a look at json_logging/base_framework.py, json_logging.flask and json_logging.sanic packages for reference implementations.
-
I configured everything, but no logs are printed out?
- Forgot to add handlers to your logger?
- Check whether logger is disabled.
-
Same log statement is printed out multiple times.
- Check whether the same handler is added to both parent and child loggers [2]
- If you using flask, by default option use_reloader is set to True which will start 2 instances of web application. change it to False to disable this behaviour [3]
-
Can not install Sanic on Windows?
you can install Sanic on windows by running these commands:
git clone --branch 0.7.0 https://github.com/channelcat/sanic.git
set SANIC_NO_UVLOOP=true
set SANIC_NO_UJSON=true
pip3 install .
2 types of logging statement will be emitted by this library:
- Application log: normal logging statement e.g.:
{
"type": "log",
"written_at": "2017-12-23T16:55:37.280Z",
"written_ts": 1514048137280721000,
"component_id": "1d930c0xd-19-s3213",
"component_name": "ny-component_name",
"component_instance": 0,
"logger": "test logger",
"thread": "MainThread",
"level": "INFO",
"line_no": 22,
"filename": "/path/to/foo.py"
"exc_info": "Traceback (most recent call last): \n File "<stdin>", line 1, in <module>\n ValueError: There is something wrong with your input",
"correlation_id": "1975a02e-e802-11e7-8971-28b2bd90b19a",
"extra_property": "extra_value",
"msg": "This is a message"
}
- Request log: request instrumentation logging statement which recorded request information such as response time, request size, etc.
{
"type": "request",
"written_at": "2017-12-23T16:55:37.280Z",
"written_ts": 1514048137280721000,
"component_id": "-",
"component_name": "-",
"component_instance": 0,
"correlation_id": "1975a02e-e802-11e7-8971-28b2bd90b19a",
"remote_user": "user_a",
"request": "/index.html",
"referer": "-",
"x_forwarded_for": "-",
"protocol": "HTTP/1.1",
"method": "GET",
"remote_ip": "127.0.0.1",
"request_size_b": 1234,
"remote_host": "127.0.0.1",
"remote_port": 50160,
"request_received_at": "2017-12-23T16:55:37.280Z",
"response_time_ms": 0,
"response_status": 200,
"response_size_b": "122",
"response_content_type": "text/html; charset=utf-8",
"response_sent_at": "2017-12-23T16:55:37.280Z"
}
See following tables for detail format explanation:
- Common field
Field | Description | Format | Example |
---|---|---|---|
written_at | The date when this log message was written. | ISO 8601 YYYY-MM-DDTHH:MM:SS.milliZ | 2017-12-23T15:14:02.208Z |
written_ts | The timestamp in nano-second precision when this request metric message was written. | long number | 1456820553816849408 |
correlation_id | The timestamp in nano-second precision when this request metric message was written. | string | db2d002e-2702-41ec-66f5-c002a80a3d3f |
type | Type of logging. "logs" or "request" | string | |
component_id | Uniquely identifies the software component that has processed the current request | string | 9e6f3ecf-def0-4baf-8fac-9339e61d5645 |
component_name | A human-friendly name representing the software component | string | my-fancy-component |
component_instance | Instance's index of horizontally scaled service | string | 0 |
- application logs
Field | Description | Format | Example |
---|---|---|---|
msg | The actual message string passed to the logger. | string | This is a log message |
level | The log "level" indicating the severity of the log message. | string | INFO |
thread | Identifies the execution thread in which this log message has been written. | string | http-nio-4655 |
logger | The logger name that emits the log message. | string | requests-logger |
filename | The file name where an exception originated | string | /path/to/foo.py |
exc_info | Traceback information about an exception | string | "Traceback (most recent call last): \n File "", line 1, in \n ValueError: There is something wrong with your input" |
- request logs:
Field | Description | Format | Example |
---|---|---|---|
request | request path that has been processed. | string | /get/api/v2 |
request_received_at | The date when an incoming request was received by the producer. | ISO 8601 YYYY-MM-DDTHH:MM:SS.milliZ The precision is in milliseconds. The timezone is UTC. | 2015-01-24 14:06:05.071Z |
response_sent_at | The date when the response to an incoming request was sent to the consumer. | ditto | 2015-01-24 14:06:05.071Z |
response_time_ms | How many milliseconds it took the producer to prepare the response. | float | 43.476 |
protocol | Which protocol was used to issue a request to a producer. In most cases, this will be HTTP (including a version specifier), but for outgoing requests reported by a producer, it may contain other values. E.g. a database call via JDBC may report, e.g. "JDBC/1.2" | string | HTTP/1.1 |
method | The corresponding protocol method. | string | GET |
remote_ip | IP address of the consumer (might be a proxy, might be the actual client) | string | 192.168.0.1 |
remote_host | host name of the consumer (might be a proxy, might be the actual client) | string | my.happy.host |
remote_port | Which TCP port is used by the consumer to establish a connection to the remote producer. | string | 1234 |
remote_user | The username associated with the request | string | user_name |
request_size_b | The size in bytes of the requesting entity or "body" (e.g., in case of POST requests). | long | 1234 |
response_size_b | The size in bytes of the response entity | long | 1234 |
response_status | The status code of the response. | long | 200 |
response_content_type | The MIME type associated with the entity of the response if available/specified | long | application/json |
referer | For HTTP requests, identifies the address of the webpage (i.e. the URI or IRI) that linked to the resource being requested. | string | /index.html |
x_forwarded_for | Comma-separated list of IP addresses, the left-most being the original client, followed by proxy server addresses that forwarded the client request. | string | 192.0.2.60,10.12.9.23 |
https://stackoverflow.com/questions/25433258/what-is-the-x-request-id-http-header
https://docs.python.org/3/library/logging.html#logging.Logger.propagate https://docs.python.org/2/library/logging.html#logging.Logger.propagate
http://flask.pocoo.org/docs/0.12/errorhandling/#working-with-debuggers
create file .pypirc
[distutils]
index-servers =
pypi
pypitest
[pypi]
repository: https://upload.pypi.org/legacy/
username:
password:
[pypitest]
repository: https://test.pypi.org/legacy/
username=
password=
build
python setup.py bdist_wheel --universal
pypitest
twine upload --repository-url https://test.pypi.org/legacy/ dist/*
pip3 install json_logging --index-url https://test.pypi.org/simple/
pypi
twine upload --repository-url https://upload.pypi.org/legacy/ dist/*
pip3 install json_logging