This is ready to use vs2015 version of the original libfacedetect - https://github.com/ShiqiYu/libfacedetection.
You can use this libfacedetection-vs2015 to detect face in image/images/webcam and also for benchmarking face detection performance in AFW,PASCAL,FDDB,UFDD and WIDER face dataset.
$libfacedetection.exe -mode=0 -webcam=0
$libfacedetection.exe -mode=1 -path=../image/1.jpg
$libfacedetection.exe -mode=2 -path=../image/
a) afw dataset
$libfacedetection.exe -mode=3 -dataset=AFW -path=/path/to/afw/dataset/
b) PASCAL dataset
$libfacedetection.exe -mode=3 -dataset=PASCAL -path=/path/to/pascal/dataset/
c) FDDB dataset
$libfacedetection.exe -mode=3 -dataset=FDDB -path=/path/to/fddb/dataset/
d) WIDER_val dataset
#libfacedetection.exe -mode=3 -dataset=WIDER_VAL -path=/path/to/wider/validation/dataset/
e) UFDD dataset
#libfacedetection.exe -mode=3 -dataset=UFDD -path=/path/to/UFDD/validation/dataset/
Method | Time | FPS | Time | FPS |
---|---|---|---|---|
X64 | X64 | X64 | X64 | |
Single-thread | Single-thread | Multi-thread | Multi-thread | |
cnn (CPU, 640x480) | 71.44ms | 14.0 | 16.91ms | 59.1 |
cnn (CPU, 320x240) | 18.21ms | 54.9 | 4.60ms | 217.4 |
- Face detection only, and no landmark detection included.
- Minimal face size ~10x10
- Intel(R) Core(TM) i7-7700 CPU @ 3.6GHz.
Method | Time | FPS | Time | FPS |
---|---|---|---|---|
Single-thread | Single-thread | Multi-thread | Multi-thread | |
cnn (CPU, 640x480) | 593.86ms | 1.68 | 183.85ms | 5.44 |
cnn (CPU, 320x240) | 140.50ms | 7.12 | 45.48ms | 21.99 |
cnn (CPU, 160x120) | 30.15ms | 33.17 | 10.75ms | 92.99 |
cnn (CPU, 128x96) | 20.20ms | 49.49 | 6.73ms | 148.53 |
- Face detection only, and no landmark detection included.
- Minimal face size ~10x10
- Raspberry Pi 3 B+, Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
Method | Time | FPS | Time | FPS | Time | FPS | Misc |
---|---|---|---|---|---|---|---|
Win32 | Win32 | X64 | X64 | X64 | X64 | ||
Single-thread | Single-thread | Single-thread | Single-thread | Multi-thread | Multi-thread | ||
OpenCV | -- | -- | -- | -- | 12.33ms | 81.1 | Yaw angle: -60 to 60 degrees |
frontal | 2.92ms | 342.5 | 2.41ms | 414.9 | 0.652ms | 1533.1 | Yaw angle: -60 to 60 degrees |
frontal-surveillance | 3.83ms | 261.1 | 3.37ms | 269.7 | 0.944ms | 1059.8 | Yaw angle: -70 to 70 degrees |
multiview | 7.12ms | 140.4 | 5.81ms | 172.1 | 1.597ms | 626.4 | Yaw angle: -90 to 90 degrees |
multiview_reinforce | 10.95ms | 91.3 | 9.15ms | 109.3 | 2.725ms | 367.0 | Yaw angle: -90 to 90 degrees |
- Face detection only, and no landmark detection included.
- 640x480 image size (VGA), scale=1.2, minimal window size = 48.
- Intel(R) Core(TM) i7-4770 CPU @ 3.4GHz.
- OpenCV classifier file: haarcascade_frontalface_alt.xml
Method | Time | FPS | Misc |
---|---|---|---|
frontal | 12.5ms | 80.0 | Yaw angle: -60 to 60 degrees |
frontal-surveillance | 15.7ms | 63.7 | Yaw angle: -70 to 70 degrees |
multiview | 27.8ms | 36.0 | Yaw angle: -90 to 90 degrees |
multiview_reinforce | 38.4ms | 26.0 | Yaw angle: -90 to 90 degrees |
- Face detection only, and no landmark detection included.
- 640x480 image size (VGA), scale=1.2, minimal window size = 48
- NVIDIA TK1 "4-Plus-1" 2.32GHz ARM quad-core Cortex-A15 CPU
- Multi-core parallelization is disabled.
- C programming language, and no SIMD instruction is used.
The dll cannot run on ARM. The library should be recompiled from source code for ARM compatibility. If you need the source code, a commercial license is needed.
The binary evaluation library for ARM can be downloaded at https://github.com/OAID/YSQfastfd . The detection functions can only be called about 2000 times for evaluation.
FDDB: http://vis-www.cs.umass.edu/fddb/index.html
- scale=1.08
- minimal window size = 16
- the heights of the face rectangles are scaled to 1.2 to fit the ground truth data in FDDB.
- Shiqi Yu, shiqi.yu@gmail.com
- Jia Wu
- Shengyin Wu
- Dong Xu
- The result image was taken by Chloé Calmon.