/Neural-Baby-Talk-python3

NBT with some changes to run smoothly with python3

Primary LanguagePythonMIT LicenseMIT

Neural Baby Talk

Setup

To setup requirements, I highly recommend to use virtual environment with conda. Here is the yml file, using this command to complete your package setup.

conda env create -f environment.yml

requirement

Inference:

Data Preparation:

Evaluation:

  • coco-caption: Download the modified version of coco-caption and put it under tools/

Copy model-best.pth and infos_-best.pkl (from save/ dir)to NeuralBabyTalk/

Demo

NeuralBabyTalk$ python demo.py --help --data_path data/
usage: demo.py [-h] [--start_from START_FROM]
               [--load_best_score LOAD_BEST_SCORE] [--id ID]
               [--image_path IMAGE_PATH] [--cbs CBS]
               [--cbs_tag_size CBS_TAG_SIZE] [--cbs_mode CBS_MODE]
               [--det_oracle DET_ORACLE] [--cnn_backend CNN_BACKEND]
               [--data_path DATA_PATH] [--beam_size BEAM_SIZE]

optional arguments:
  -h, --help            show this help message and exit
  --start_from START_FROM
  --load_best_score LOAD_BEST_SCORE
                        Do we load previous best score when resuming training.
  --id ID               an id identifying this run/job. used in cross-val and
                        appended when writing progress files
  --image_path IMAGE_PATH
                        path to the h5file containing the image data
  --cbs CBS             whether use constraint beam search.
  --cbs_tag_size CBS_TAG_SIZE
                        whether use constraint beam search.
  --cbs_mode CBS_MODE   which cbs mode to use in the decoding stage. cbs_mode:
                        all|unique|novel
  --det_oracle DET_ORACLE
                        whether use oracle bounding box.
  --cnn_backend CNN_BACKEND
                        res101 or vgg16
  --data_path DATA_PATH
  --beam_size BEAM_SIZE

NeuralBabyTalk$ python3 demo.py --image_path /home/resl/NeuralBabyTalk/data/coco/images --data_path data/ --cnn_backend res101

Without detection bbox

With detection bbox

Constraint beam search

This code also involve the implementation of constraint beam search proposed by Peter Anderson. I'm not sure my impmentation is 100% correct, but it works well in conjuction with neural baby talk code. You can refer to this paper for more details. To enable CBS while decoding, please set the following flags:

--cbs True|False : Whether use the constraint beam search.
--cbs_tag_size 3 : How many detection bboxes do we want to include in the decoded caption.
--cbs_mode all|unqiue|novel : Do we allow the repetive bounding box? `novel` is an option only for novel object detection task.

Training and Evaluation

Data Preparation

Head to data/README.md, and prepare the data for training and evaluation.

Pretrained model

Task Dataset Backend Batch size Link
Standard image captioning COCO Res-101 100 Pre-trained Model
Standard image captioning Flickr30k Res-101 50 Pre-trained Model
Robust image captioning COCO Res-101 100 Pre-trained Model
Novel object captioning COCO Res-101 100 Pre-trained Model

Standard Image Captioning

Training (COCO)

First, modify the cofig file cfgs/normal_coco_res101.yml with the correct file path.

python main.py --path_opt cfgs/normal_coco_res101.yml --batch_size 20 --cuda True --num_workers 20 --max_epoch 30
Evaluation (COCO)

Download Pre-trained model. Extract the tar.zip file and put it under save/.

python main.py --path_opt cfgs/normal_coco_res101.yml --batch_size 20 --cuda True --num_workers 20 --max_epoch 30 --inference_only True --beam_size 3 --start_from save/coco_nbt_1024
Training (Flickr30k)

Modify the cofig file cfgs/normal_flickr_res101.yml with the correct file path.

python main.py --path_opt cfgs/normal_flickr_res101.yml --batch_size 20 --cuda True --num_workers 20 --max_epoch 30
Evaluation (Flickr30k)

Download Pre-trained model. Extract the tar.zip file and put it under save/.

python main.py --path_opt cfgs/normal_flickr_res101.yml --batch_size 20 --cuda True --num_workers 20 --max_epoch 30 --inference_only True --beam_size 3 --start_from save/flickr30k_nbt_1024

Robust Image Captioning

Training

Modify the cofig file cfgs/normal_flickr_res101.yml with the correct file path.

python main.py --path_opt cfgs/robust_coco.yml --batch_size 20 --cuda True --num_workers 20 --max_epoch 30
Evaluation (robust-coco)

Download Pre-trained model. Extract the tar.zip file and put it under save/.

python main.py --path_opt cfgs/robust_coco.yml --batch_size 20 --cuda True --num_workers 20 --max_epoch 30 --inference_only True --beam_size 3 --start_from save/robust_coco_nbt_1024

Novel Object Captioning

Training

Modify the cofig file cfgs/noc_coco_res101.yml with the correct file path.

python main.py --path_opt cfgs/noc_coco_res101.yml --batch_size 20 --cuda True --num_workers 20 --max_epoch 30
Evaluation (noc-coco)

Download Pre-trained model. Extract the tar.zip file and put it under save/.

python main.py --path_opt cfgs/noc_coco_res101.yml --batch_size 20 --cuda True --num_workers 20 --max_epoch 30 --inference_only True --beam_size 3 --start_from save/noc_coco_nbt_1024

Multi-GPU Training

This codebase also support training with multiple GPU. To enable this feature, simply add --mGPUs Ture in the commnad.

Self-Critic Training and Fine-Tuning CNN

This codebase also support self-critic training and fine-tuning CNN. You are welcome to try this part and upload your trained model to the repo!

More Visualization Results

teaser results

Reference

If you use this code as part of any published research, please acknowledge the following paper

@inproceedings{Lu2018Neural,
author = {Lu, Jiasen and Yang, Jianwei and Batra, Dhruv and Parikh, Devi},
title = {Neural Baby Talk},
booktitle = {CVPR},
year = {2018}
}

Acknowledgement

We thank Ruotian Luo for his self-critical.pytorch repo.