/siren-pytorch

Pytorch implementation of SIREN - Implicit Neural Representations with Periodic Activation Function

Primary LanguagePythonMIT LicenseMIT

SIREN in Pytorch

PyPI version

Pytorch implementation of SIREN - Implicit Neural Representations with Periodic Activation Function

Install

$ pip install siren-pytorch

Usage

A SIREN based multi-layered neural network

import torch
from torch import nn
from siren_pytorch import SirenNet

net = SirenNet(
    dim_in = 2,                        # input dimension, ex. 2d coor
    dim_hidden = 256,                  # hidden dimension
    dim_out = 3,                       # output dimension, ex. rgb value
    num_layers = 5,                    # number of layers
    final_activation = nn.Sigmoid(),   # activation of final layer (nn.Identity() for direct output)
    w0_initial = 30.                   # different signals may require different omega_0 in the first layer - this is a hyperparameter
)

coor = torch.randn(1, 2)
net(coor) # (1, 3) <- rgb value

One SIREN layer

import torch
from siren_pytorch import Siren

neuron = Siren(
    dim_in = 3,
    dim_out = 256
)

coor = torch.randn(1, 3)
neuron(coor) # (1, 256)

Sine activation (just a wrapper around torch.sin)

import torch
from siren_pytorch import Sine

act = Sine(1.)
coor = torch.randn(1, 2)
act(coor)

Citations

@misc{sitzmann2020implicit,
    title={Implicit Neural Representations with Periodic Activation Functions},
    author={Vincent Sitzmann and Julien N. P. Martel and Alexander W. Bergman and David B. Lindell and Gordon Wetzstein},
    year={2020},
    eprint={2006.09661},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}