A curated list of gradient and adaptive boosting papers with implementations from the following conferences:
- Machine learning
- Computer vision
- Natural language processing
- Data
- Artificial intelligence
Similar collections about graph classification, classification/regression tree and community detection papers with implementations.
-
Induction of Non-Monotonic Logic Programs to Explain Boosted Tree Models Using LIME (AAAI 2019)
- Farhad Shakerin, Gopal Gupta
- [Paper]
-
Verifying Robustness of Gradient Boosted Models (AAAI 2019)
- Gil Einziger, Maayan Goldstein, Yaniv Sa'ar, Itai Segall
- [Paper]
-
Online Multiclass Boosting with Bandit Feedback (AISTATS 2019)
- Daniel T. Zhang, Young Hun Jung, Ambuj Tewari
- [Paper]
-
Boosted Density Estimation Remastered (ICML 2019)
- Zac Cranko, Richard Nock
- [Paper]
-
Lossless or Quantized Boosting with Integer Arithmetic (ICML 2019)
- Richard Nock, Robert C. Williamson
- [Paper]
-
Optimal Minimal Margin Maximization with Boosting (ICML 2019)
- Alexander Mathiasen, Kasper Green Larsen, Allan Grønlund
- [Paper]
-
Katalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number (ICML 2019)
- Zaiyi Chen, Yi Xu, Haoyuan Hu, Tianbao Yang
- [Paper]
-
Boosting for Comparison-Based Learning (IJCAI 2019)
- Michaël Perrot, Ulrike von Luxburg
- [Paper]
-
AugBoost: Gradient Boosting Enhanced with Step-Wise Feature Augmentation (IJCAI 2019)
- Philip Tannor, Lior Rokach
- [Paper]
-
Gradient Boosting with Piece-Wise Linear Regression Trees (IJCAI 2019)
-
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks (NeurIPS 2019)
-
Block-distributed Gradient Boosted Trees (SIGIR 2019)
- Theodore Vasiloudis, Hyunsu Cho, Henrik Boström
- [Paper]
-
Learning to Rank in Theory and Practice: From Gradient Boosting to Neural Networks and Unbiased Learning (SIGIR 2019)
- Claudio Lucchese, Franco Maria Nardini, Rama Kumar Pasumarthi, Sebastian Bruch, Michael Bendersky, Xuanhui Wang, Harrie Oosterhuis, Rolf Jagerman, Maarten de Rijke
- [Paper]
-
Boosted Generative Models (AAAI 2018)
-
Boosting Variational Inference: an Optimization Perspective (AISTATS 2018)
-
Online Boosting Algorithms for Multi-label Ranking (AISTATS 2018)
-
DualBoost: Handling Missing Values with Feature Weights and Weak Classifiers that Abstain (CIKM 2018)
- Weihong Wang, Jie Xu, Yang Wang, Chen Cai, Fang Chen
- [Paper]
-
Functional Gradient Boosting based on Residual Network Perception (ICML 2018)
-
Finding Influential Training Samples for Gradient Boosted Decision Trees (ICML 2018)
- Boris Sharchilev, Yury Ustinovskiy, Pavel Serdyukov, Maarten de Rijke
- [Paper]
-
Learning Deep ResNet Blocks Sequentially using Boosting Theory (ICML 2018)
-
UCBoost: A Boosting Approach to Tame Complexity and Optimality for Stochastic Bandits (IJCAI 2018)
-
Adaboost with Auto-Evaluation for Conversational Models (IJCAI 2018)
- Juncen Li, Ping Luo, Ganbin Zhou, Fen Lin, Cheng Niu
- [Paper]
-
Ensemble Neural Relation Extraction with Adaptive Boosting (IJCAI 2018)
- Dongdong Yang, Senzhang Wang, Zhoujun Li
- [Paper]
-
CatBoost: Unbiased Boosting with Categorical Features (NIPS 2018)
-
Multitask Boosting for Survival Analysis with Competing Risks (NIPS 2018)
- Alexis Bellot, Mihaela van der Schaar
- [Paper]
-
Multi-Layered Gradient Boosting Decision Trees (NIPS 2018)
-
Boosted Sparse and Low-Rank Tensor Regression (NIPS 2018)
-
Selective Gradient Boosting for Effective Learning to Rank (SIGIR 2018)
-
Boosting for Real-Time Multivariate Time Series Classification (AAAI 2017)
- Haishuai Wang, Jun Wu
- [Paper]
-
Cross-Domain Sentiment Classification via Topic-Related TrAdaBoost (AAAI 2017)
-
Extreme Gradient Boosting and Behavioral Biometrics (AAAI 2017)
- Benjamin Manning
- [Paper]
-
FeaBoost: Joint Feature and Label Refinement for Semantic Segmentation (AAAI 2017)
- Yulei Niu, Zhiwu Lu, Songfang Huang, Xin Gao, Ji-Rong Wen
- [Paper]
-
Boosting Complementary Hash Tables for Fast Nearest Neighbor Search (AAAI 2017)
- Xianglong Liu, Cheng Deng, Yadong Mu, Zhujin Li
- [Paper]
-
Gradient Boosting on Stochastic Data Streams (AISTATS 2017)
- Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, J. Andrew Bagnell
- [Paper]
-
BoostVHT: Boosting Distributed Streaming Decision Trees (CIKM 2017)
- Theodore Vasiloudis, Foteini Beligianni, Gianmarco De Francisci Morales
- [Paper]
-
Fast Boosting Based Detection Using Scale Invariant Multimodal Multiresolution Filtered Features (CVPR 2017)
- Arthur Daniel Costea, Robert Varga, Sergiu Nedevschi
- [Paper]
-
BIER - Boosting Independent Embeddings Robustly (ICCV 2017)
-
An Analysis of Boosted Linear Classifiers on Noisy Data with Applications to Multiple-Instance Learning (ICDM 2017)
- Rui Liu, Soumya Ray
- [Paper]
-
Variational Boosting: Iteratively Refining Posterior Approximations (ICML 2017)
-
Boosted Fitted Q-Iteration (ICML 2017)
- Samuele Tosatto, Matteo Pirotta, Carlo D'Eramo, Marcello Restelli
- [Paper]
-
A Simple Multi-Class Boosting Framework with Theoretical Guarantees and Empirical Proficiency (ICML 2017)
-
Gradient Boosted Decision Trees for High Dimensional Sparse Output (ICML 2017)
-
Local Topic Discovery via Boosted Ensemble of Nonnegative Matrix Factorization (IJCAI 2017)
-
Boosted Zero-Shot Learning with Semantic Correlation Regularization (IJCAI 2017)
- Te Pi, Xi Li, Zhongfei (Mark) Zhang
- [Paper]
-
BDT: Gradient Boosted Decision Tables for High Accuracy and Scoring Efficiency (KDD 2017)
- Yin Lou, Mikhail Obukhov
- [Paper]
-
CatBoost: Gradient Boosting with Categorical Features Support (NIPS 2017)
-
Cost efficient gradient boosting (NIPS 2017)
-
AdaGAN: Boosting Generative Models (NIPS 2017)
-
LightGBM: A Highly Efficient Gradient Boosting Decision Tree (NIPS 2017)
-
Early stopping for kernel boosting algorithms: A general analysis with localized complexities (NIPS 2017)
-
Online multiclass boosting (NIPS 2017)
- Young Hun Jung, Jack Goetz, Ambuj Tewari
- [Paper]
-
Stacking Bagged and Boosted Forests for Effective Automated Classification (SIGIR 2017)
-
GB-CENT: Gradient Boosted Categorical Embedding and Numerical Trees (WWW 2017)
-
Group Cost-Sensitive Boosting for Multi-Resolution Pedestrian Detection (AAAI 2016)
-
Communication Efficient Distributed Agnostic Boosting (AISTATS 2016)
- Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau
- [Paper]
-
Logistic Boosting Regression for Label Distribution Learning (CVPR 2016)
- Chao Xing, Xin Geng, Hui Xue
- [Paper]
-
Structured Regression Gradient Boosting (CVPR 2016)
- Ferran Diego, Fred A. Hamprecht
- [Paper]
-
L-EnsNMF: Boosted Local Topic Discovery via Ensemble of Nonnegative Matrix Factorization (ICDM 2016)
-
Meta-Gradient Boosted Decision Tree Model for Weight and Target Learning (ICML 2016)
- Yury Ustinovskiy, Valentina Fedorova, Gleb Gusev, Pavel Serdyukov
- [Paper]
-
Generalized Dictionary for Multitask Learning with Boosting (IJCAI 2016)
- Boyu Wang, Joelle Pineau
- [Paper]
-
Self-Paced Boost Learning for Classification (IJCAI 2016)
- Te Pi, Xi Li, Zhongfei Zhang, Deyu Meng, Fei Wu, Jun Xiao, Yueting Zhuang
- [Paper]
-
Interactive Martingale Boosting (IJCAI 2016)
- Ashish Kulkarni, Pushpak Burange, Ganesh Ramakrishnan
- [Paper]
-
Optimal and Adaptive Algorithms for Online Boosting (IJCAI 2016)
-
Rating-Boosted Latent Topics: Understanding Users and Items with Ratings and Reviews (IJCAI 2016)
- Yunzhi Tan, Min Zhang, Yiqun Liu, Shaoping Ma
- [Paper]
-
XGBoost: A Scalable Tree Boosting System (KDD 2016)
-
Boosted Decision Tree Regression Adjustment for Variance Reduction in Online Controlled Experiments (KDD 2016)
- Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, Pavel Serdyukov
- [Paper]
-
Boosting with Abstention (NIPS 2016)
- Corinna Cortes, Giulia DeSalvo, Mehryar Mohri
- [Paper]
-
SEBOOST - Boosting Stochastic Learning Using Subspace Optimization Techniques (NIPS 2016)
-
Incremental Boosting Convolutional Neural Network for Facial Action Unit Recognition (NIPS 2016)
-
Generalized BROOF-L2R: A General Framework for Learning to Rank Based on Boosting and Random Forests (SIGIR 2016)
- Clebson C. A. de Sá, Marcos André Gonçalves, Daniel Xavier de Sousa, Thiago Salles
- [Paper]
-
Online Boosting Algorithms for Anytime Transfer and Multitask Learning (AAAI 2015)
- Boyu Wang, Joelle Pineau
- [Paper]
-
A Boosted Multi-Task Model for Pedestrian Detection with Occlusion Handling (AAAI 2015)
- Chao Zhu, Yuxin Peng
- [Paper]
-
Efficient Second-Order Gradient Boosting for Conditional Random Fields (AISTATS 2015)
- Tianqi Chen, Sameer Singh, Ben Taskar, Carlos Guestrin
- [Paper]
-
Tumblr Blog Recommendation with Boosted Inductive Matrix Completion (CIKM 2015)
- Donghyuk Shin, Suleyman Cetintas, Kuang-Chih Lee, Inderjit S. Dhillon
- [Paper]
-
Basis mapping based boosting for object detection (CVPR 2015)
- Haoyu Ren, Ze-Nian Li
- [Paper]
-
Tracking-by-Segmentation with Online Gradient Boosting Decision Tree (ICCV 2015)
-
Learning to Boost Filamentary Structure Segmentation (ICCV 2015)
- Lin Gu, Li Cheng
- [Paper]
-
Optimal and Adaptive Algorithms for Online Boosting (ICML 2015)
-
Rademacher Observations, Private Data, and Boosting (ICML 2015)
- Richard Nock, Giorgio Patrini, Arik Friedman
- [Paper]
-
Boosted Categorical Restricted Boltzmann Machine for Computational Prediction of Splice Junctions (ICML 2015)
- Taehoon Lee, Sungroh Yoon
- [Paper]
-
A Direct Boosting Approach for Semi-supervised Classification (IJCAI 2015)
- Shaodan Zhai, Tian Xia, Zhongliang Li, Shaojun Wang
- [Paper]
-
A Boosting Algorithm for Item Recommendation with Implicit Feedback (IJCAI 2015)
-
Training-Time Optimization of a Budgeted Booster (IJCAI 2015)
- Yi Huang, Brian Powers, Lev Reyzin
- [Paper]
-
Optimal Action Extraction for Random Forests and Boosted Trees (KDD 2015)
- Zhicheng Cui, Wenlin Chen, Yujie He, Yixin Chen
- [Paper]
-
Online Gradient Boosting (NIPS 2015)
-
BROOF: Exploiting Out-of-Bag Errors Boosting and Random Forests for Effective Automated Classification (SIGIR 2015)
- Thiago Salles, Marcos André Gonçalves, Victor Rodrigues, Leonardo C. da Rocha
- [Paper]
-
Boosting Search with Deep Understanding of Contents and Users (WSDM 2015)
- Kaihua Zhu
- [Paper]
-
On Boosting Sparse Parities (AAAI 2014)
- Lev Reyzin
- [Paper]
-
Joint Coupled-Feature Representation and Coupled Boosting for AD Diagnosis (CVPR 2014)
- Yinghuan Shi, Heung-Il Suk, Yang Gao, Dinggang Shen
- [Paper]
-
From Categories to Individuals in Real Time - A Unified Boosting Approach (CVPR 2014)
-
Efficient Boosted Exemplar-Based Face Detection (CVPR 2014)
- Haoxiang Li, Zhe Lin, Jonathan Brandt, Xiaohui Shen, Gang Hua
- [Paper]
-
Facial Expression Recognition via a Boosted Deep Belief Network (CVPR 2014)
- Ping Liu, Shizhong Han, Zibo Meng, Yan Tong
- [Paper]
-
Confidence-Rated Multiple Instance Boosting for Object Detection (CVPR 2014)
- Karim Ali, Kate Saenko
- [Paper]
-
The return of AdaBoost.MH: multi-class Hamming trees (ICLR 2014)
-
Deep Boosting (ICML 2014)
-
A Convergence Rate Analysis for LogitBoost, MART and Their Variant (ICML 2014)
- Peng Sun, Tong Zhang, Jie Zhou
- [Paper]
-
Boosting with Online Binary Learners for the Multiclass Bandit Problem (ICML 2014)
- Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu
- [Paper]
-
Boosting multi-step autoregressive forecasts (ICML 2014)
- Souhaib Ben Taieb, Rob J. Hyndman
- [Paper]
-
Dynamic Programming Boosting for Discriminative Macro-Action Discovery (ICML 2014)
- Leonidas Lefakis, François Fleuret
- [Paper]
-
Guess-Averse Loss Functions For Cost-Sensitive Multiclass Boosting (ICML 2014)
- Oscar Beijbom, Mohammad J. Saberian, David J. Kriegman, Nuno Vasconcelos
- [Paper]
-
A multi-class boosting method with direct optimization (KDD 2014)
- Shaodan Zhai, Tian Xia, Shaojun Wang
- [Paper]
-
Gradient boosted feature selection (KDD 2014)
-
Multi-Class Deep Boosting (NIPS 2014)
- Vitaly Kuznetsov, Mehryar Mohri, Umar Syed
- [Paper]
-
Deconvolution of High Dimensional Mixtures via Boosting with Application to Diffusion-Weighted MRI of Human Brain (NIPS 2014)
- Charles Y. Zheng, Franco Pestilli, Ariel Rokem
- [Paper]
-
A Drifting-Games Analysis for Online Learning and Applications to Boosting (NIPS 2014)
- Haipeng Luo, Robert E. Schapire
- [Paper]
-
A Boosting Framework on Grounds of Online Learning (NIPS 2014)
- Tofigh Naghibi Mohamadpoor, Beat Pfister
- [Paper]
-
Gradient Boosting Factorization Machines (RECSYS 2014)
- Chen Cheng, Fen Xia, Tong Zhang, Irwin King, Michael R. Lyu
- [Paper]
-
Boosting Binary Keypoint Descriptors (CVPR 2013)
-
PerturBoost: Practical Confidential Classifier Learning in the Cloud (ICDM 2013)
- Keke Chen, Shumin Guo
- [Paper]
-
Multiclass Semi-Supervised Boosting Using Similarity Learning (ICDM 2013)
- Jafar Tanha, Mohammad Javad Saberian, Maarten van Someren
- [Paper]
-
Saving Evaluation Time for the Decision Function in Boosting: Representation and Reordering Base Learner (ICML 2013)
- Peng Sun, Jie Zhou
- [Paper]
-
General Functional Matrix Factorization Using Gradient Boosting (ICML 2013)
- Tianqi Chen, Hang Li, Qiang Yang, Yong Yu
- [Paper]
-
Margins, Shrinkage, and Boosting (ICML 2013)
- Matus Telgarsky
- [Paper]
-
Quickly Boosting Decision Trees - Pruning Underachieving Features Early (ICML 2013)
-
Human Boosting (ICML 2013)
- Harsh H. Pareek, Pradeep Ravikumar
- [Paper]
-
Collaborative boosting for activity classification in microblogs (KDD 2013)
- Yangqiu Song, Zhengdong Lu, Cane Wing-ki Leung, Qiang Yang
- [Paper]
-
Direct 0-1 Loss Minimization and Margin Maximization with Boosting (NIPS 2013)
- Shaodan Zhai, Tian Xia, Ming Tan, Shaojun Wang
- [Paper]
-
Reservoir Boosting : Between Online and Offline Ensemble Learning (NIPS 2013)
- Leonidas Lefakis, François Fleuret
- [Paper]
-
Non-Linear Domain Adaptation with Boosting (NIPS 2013)
- Carlos J. Becker, C. Mario Christoudias, Pascal Fua
- [Paper]
-
Boosting in the presence of label noise (UAI 2013)
- Jakramate Bootkrajang, Ata Kabán
- [Paper]
-
Contextual boost for pedestrian detection (CVPR 2012)
- Yuanyuan Ding, Jing Xiao
- [Paper]
-
Shrink boost for selecting multi-LBP histogram features in object detection (CVPR 2012)
- Cher Keng Heng, Sumio Yokomitsu, Yuichi Matsumoto, Hajime Tamura
- [Paper]
-
Boosting bottom-up and top-down visual features for saliency estimation (CVPR 2012)
- Ali Borji
- [Paper]
-
Boosting algorithms for simultaneous feature extraction and selection (CVPR 2012)
- Mohammad J. Saberian, Nuno Vasconcelos
- [Paper]
-
Sharing features in multi-class boosting via group sparsity (CVPR 2012)
- Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel
- [Paper]
-
Feature Weighting and Selection Using Hypothesis Margin of Boosting (ICDM 2012)
- Malak Alshawabkeh, Javed A. Aslam, Jennifer G. Dy, David R. Kaeli
- [Paper]
-
An AdaBoost Algorithm for Multiclass Semi-supervised Learning (ICDM 2012)
- Jafar Tanha, Maarten van Someren, Hamideh Afsarmanesh
- [[Paper]]https://ieeexplore.ieee.org/document/6413799)
-
AOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem (ICML 2012)
- Peng Sun, Mark D. Reid, Jie Zhou
- [[Paper]](AOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem)
- [Code]
-
An Online Boosting Algorithm with Theoretical Justifications (ICML 2012)
- Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu
- [Paper]
-
Learning Image Descriptors with the Boosting-Trick (NIPS 2012)
-
Accelerated Training for Matrix-norm Regularization: A Boosting Approach (NIPS 2012)
- Xinhua Zhang, Yaoliang Yu, Dale Schuurmans
- [Paper]
-
Learning from Heterogeneous Sources via Gradient Boosting Consensus (SDM 2012)
-
Selective Transfer Between Learning Tasks Using Task-Based Boosting (AAAI 2011)
- Eric Eaton, Marie desJardins
- [Paper]
-
Incorporating Boosted Regression Trees into Ecological Latent Variable Models (AAAI 2011)
- Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich
- [Paper]
-
FlowBoost - Appearance learning from sparsely annotated video (CVPR 2011)
- Karim Ali, David Hasler, François Fleuret
- [Paper]
-
AdaBoost on low-rank PSD matrices for metric learning (CVPR 2011)
- Jinbo Bi, Dijia Wu, Le Lu, Meizhu Liu, Yimo Tao, Matthias Wolf
- [Paper]
-
Boosted local structured HOG-LBP for object localization (CVPR 2011)
- Junge Zhang, Kaiqi Huang, Yinan Yu, Tieniu Tan
- [Paper]
-
A direct formulation for totally-corrective multi-class boosting (CVPR 2011)
- Chunhua Shen, Zhihui Hao
- [Paper]
-
Gated classifiers: Boosting under high intra-class variation (CVPR 2011)
- Oscar M. Danielsson, Babak Rasolzadeh, Stefan Carlsson
- [Paper]
-
TaylorBoost: First and second-order boosting algorithms with explicit margin control (CVPR 2011)
-
Robust and efficient regularized boosting using total Bregman divergence (CVPR 2011)
- Meizhu Liu, Baba C. Vemuri
- [Paper]
-
Treat samples differently: Object tracking with semi-supervised online CovBoost (ICCV 2011)
- Guorong Li, Lei Qin, Qingming Huang, Junbiao Pang, Shuqiang Jiang
- [Paper]
-
LinkBoost: A Novel Cost-Sensitive Boosting Framework for Community-Level Network Link Prediction (ICDM 2011)
- Prakash Mandayam Comar, Pang-Ning Tan, Anil K. Jain
- [Paper]
-
Learning Markov Logic Networks via Functional Gradient Boosting (ICDM 2011)
-
Boosting on a Budget: Sampling for Feature-Efficient Prediction (ICML 2011)
- Lev Reyzin
- [Paper]
-
Multiclass Boosting with Hinge Loss based on Output Coding (ICML 2011)
-
Generalized Boosting Algorithms for Convex Optimization (ICML 2011)
- Alexander Grubb, Drew Bagnell
- [Paper]
-
Imitation Learning in Relational Domains: A Functional-Gradient Boosting Approach (IJCAI 2011)
- Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik
- [Paper]
-
Boosting with Maximum Adaptive Sampling (NIPS 2011)
- Charles Dubout, François Fleuret
- [Paper]
-
The Fast Convergence of Boosting (NIPS 2011)
- Matus Telgarsky
- [Paper]
-
ShareBoost: Efficient multiclass learning with feature sharing (NIPS 2011)
- Shai Shalev-Shwartz, Yonatan Wexler, Amnon Shashua
- [Paper]
-
Multiclass Boosting: Theory and Algorithms (NIPS 2011)
- Mohammad J. Saberian, Nuno Vasconcelos
- [Paper]
-
Variance Penalizing AdaBoost (NIPS 2011)
- Pannagadatta K. Shivaswamy, Tony Jebara
- [Paper]
-
MKBoost: A Framework of Multiple Kernel Boosting (SDM 2011)
- Hao Xia, Steven C. H. Hoi
- [Paper]
-
A boosting approach to improving pseudo-relevance feedback (SIGIR 2011)
- Yuanhua Lv, ChengXiang Zhai, Wan Chen
- [Paper]
-
Bagging gradient-boosted trees for high precision, low variance ranking models (SIGIR 2011)
- Yasser Ganjisaffar, Rich Caruana, Cristina Videira Lopes
- [Paper]
-
Boosting as a Product of Experts (UAI 2011)
- Narayanan Unny Edakunni, Gary Brown, Tim Kovacs
- [Paper]
-
Parallel boosted regression trees for web search ranking (WWW 2011)
-
The Boosting Effect of Exploratory Behaviors (AAAI 2010)
- Jivko Sinapov, Alexander Stoytchev
- [Paper]
-
Boosting-Based System Combination for Machine Translation (ACL 2010)
- Tong Xiao, Jingbo Zhu, Muhua Zhu, Huizhen Wang
- [Paper]
-
BagBoo: a scalable hybrid bagging-the-boosting model (CIKM 2010)
-
Automatic detection of craters in planetary images: an embedded framework using feature selection and boosting (CIKM 2010)
- Wei Ding, Tomasz F. Stepinski, Lourenço P. C. Bandeira, Ricardo Vilalta, Youxi Wu, Zhenyu Lu, Tianyu Cao
- [Paper]
-
Facial point detection using boosted regression and graph models (CVPR 2010)
- Michel François Valstar, Brais Martínez, Xavier Binefa, Maja Pantic
- [Paper]
-
Boosting for transfer learning with multiple sources (CVPR 2010)
- Yi Yao, Gianfranco Doretto
- [Paper]
-
Efficient rotation invariant object detection using boosted Random Ferns (CVPR 2010)
- Michael Villamizar, Francesc Moreno-Noguer, Juan Andrade-Cetto, Alberto Sanfeliu
- [Paper]
-
Implicit hierarchical boosting for multi-view object detection (CVPR 2010)
- Xavier Perrotton, Marc Sturzel, Michel Roux
- [Paper]
-
On-line semi-supervised multiple-instance boosting (CVPR 2010)
- Bernhard Zeisl, Christian Leistner, Amir Saffari, Horst Bischof
- [Paper]
-
Online multi-class LPBoost (CVPR 2010)
-
Homotopy Regularization for Boosting (ICDM 2010)
- Zheng Wang, Yangqiu Song, Changshui Zhang
- [Paper]
-
Exploiting Local Data Uncertainty to Boost Global Outlier Detection (ICDM 2010)
- Bo Liu, Jie Yin, Yanshan Xiao, Longbing Cao, Philip S. Yu
- [Paper]
-
Boosting Classifiers with Tightened L0-Relaxation Penalties (ICML 2010)
- Noam Goldberg, Jonathan Eckstein
- [Paper]
-
Boosting for Regression Transfer (ICML 2010)
-
Boosted Backpropagation Learning for Training Deep Modular Networks (ICML 2010)
- Alexander Grubb, J. Andrew Bagnell
- [Paper]
-
Fast boosting using adversarial bandits (ICML 2010)
- Róbert Busa-Fekete, Balázs Kégl
- [Paper]
-
Boosting with structure information in the functional space: an application to graph classification (KDD 2010)
- Hongliang Fei, Jun Huan
- [Paper]
-
Multi-task learning for boosting with application to web search ranking (KDD 2010)
- Olivier Chapelle, Pannagadatta K. Shivaswamy, Srinivas Vadrevu, Kilian Q. Weinberger, Ya Zhang, Belle L. Tseng
- [Paper]
-
A Theory of Multiclass Boosting (NIPS 2010)
- Indraneel Mukherjee, Robert E. Schapire
- [Paper]
-
Boosting Classifier Cascades (NIPS 2010)
- Mohammad J. Saberian, Nuno Vasconcelos
- [Paper]
-
Joint Cascade Optimization Using A Product Of Boosted Classifiers (NIPS 2010)
- Leonidas Lefakis, François Fleuret
- [Paper]
-
Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost (UAI 2010)
-
Feature selection for ranking using boosted trees (CIKM 2009)
- Feng Pan, Tim Converse, David Ahn, Franco Salvetti, Gianluca Donato
- [Paper]
-
Boosting KNN text classification accuracy by using supervised term weighting schemes (CIKM 2009)
- Iyad Batal, Milos Hauskrecht
- [Paper]
-
Stochastic gradient boosted distributed decision trees (CIKM 2009)
- Jerry Ye, Jyh-Herng Chow, Jiang Chen, Zhaohui Zheng
- [Paper]
-
A general magnitude-preserving boosting algorithm for search ranking (CIKM 2009)
- Chenguang Zhu, Weizhu Chen, Zeyuan Allen Zhu, Gang Wang, Dong Wang, Zheng Chen
- [Paper]
-
Reducing Joint Boost-based multiclass classification to proximity search (CVPR 2009)
- Alexandra Stefan, Vassilis Athitsos, Quan Yuan, Stan Sclaroff
- [Paper]
-
Imbalanced RankBoost for efficiently ranking large-scale image%2Fvideo collections (CVPR 2009)
- Michele Merler, Rong Yan, John R. Smith
- [Paper]
-
Regularized multi-class semi-supervised boosting (CVPR 2009)
- Amir Saffari, Christian Leistner, Horst Bischof
- [Paper]
-
Learning to associate: HybridBoosted multi-target tracker for crowded scene (CVPR 2009)
- Yuan Li, Chang Huang, Ram Nevatia
- [Paper]
-
Boosted multi-task learning for face verification with applications to web image and video search (CVPR 2009)
- Xiaogang Wang, Cha Zhang, Zhengyou Zhang
- [Paper]
-
LidarBoost: Depth superresolution for ToF 3D shape scanning (CVPR 2009)
- Sebastian Schuon, Christian Theobalt, James E. Davis, Sebastian Thrun
- [Paper]
-
Model Adaptation via Model Interpolation and Boosting for Web Search Ranking (EMNLP 2009)
- Jianfeng Gao, Qiang Wu, Chris Burges, Krysta Marie Svore, Yi Su, Nazan Khan, Shalin Shah, Hongyan Zhou
- [Paper]
-
Finding shareable informative patterns and optimal coding matrix for multiclass boosting (ICCV 2009)
- Bang Zhang, Getian Ye, Yang Wang, Jie Xu, Gunawan Herman
- [Paper]
-
RankBoost with L1 regularization for facial expression recognition and intensity estimation (ICCV 2009)
- Peng Yang, Qingshan Liu, Dimitris N. Metaxas
- [Paper]
-
A robust boosting tracker with minimum error bound in a co-training framework (ICCV 2009)
- Rong Liu, Jian Cheng, Hanqing Lu
- [Paper]
-
Tutorial summary: Survey of boosting from an optimization perspective (ICML 2009)
- Manfred K. Warmuth, S. V. N. Vishwanathan
- [Paper]
-
Boosting products of base classifiers (ICML 2009)
- Balázs Kégl, Róbert Busa-Fekete
- [Paper]
-
ABC-boost: adaptive base class boost for multi-class classification (ICML 2009)
- Ping Li
- [Paper]
-
Boosting with structural sparsity (ICML 2009)
- John C. Duchi, Yoram Singer
- [Paper]
-
Boosting Constrained Mutual Subspace Method for Robust Image-Set Based Object Recognition (IJCAI 2009)
- Xi Li, Kazuhiro Fukui, Nanning Zheng
- [Paper]
-
Information theoretic regularization for semi-supervised boosting (KDD 2009)
- Lei Zheng, Shaojun Wang, Yan Liu, Chi-Hoon Lee
- [Paper]
-
Potential-Based Agnostic Boosting (NIPS 2009)
- Adam Kalai, Varun Kanade
- [Paper]
-
Positive Semidefinite Metric Learning with Boosting (NIPS 2009)
- Chunhua Shen, Junae Kim, Lei Wang, Anton van den Hengel
- [Paper]
-
Boosting with Spatial Regularization (NIPS 2009)
- Zhen James Xiang, Yongxin Taylor Xi, Uri Hasson, Peter J. Ramadge
- [Paper]
-
Effective Boosting of Na%C3%AFve Bayesian Classifiers by Local Accuracy Estimation (PAKDD 2009)
- Zhipeng Xie
- [Paper]
-
Multi-resolution Boosting for Classification and Regression Problems (PAKDD 2009)
- Chandan K. Reddy, Jin Hyeong Park
- [Paper]
-
Efficient Active Learning with Boosting (SDM 2009)
- Zheng Wang, Yangqiu Song, Changshui Zhang
- [Paper]
-
Group-based learning: a boosting approach (CIKM 2008)
- Weijian Ni, Jun Xu, Hang Li, Yalou Huang
- [Paper]
-
Semi-supervised boosting using visual similarity learning (CVPR 2008)
- Christian Leistner, Helmut Grabner, Horst Bischof
- [Paper]
-
Mining compositional features for boosting (CVPR 2008)
- Junsong Yuan, Jiebo Luo, Ying Wu
- [Paper]
-
Boosted deformable model for human body alignment (CVPR 2008)
- Xiaoming Liu, Ting Yu, Thomas Sebastian, Peter H. Tu
- [Paper]
-
Discriminative modeling by Boosting on Multilevel Aggregates (CVPR 2008)
- Jason J. Corso
- [Paper]
-
Face alignment via boosted ranking model (CVPR 2008)
- Hao Wu, Xiaoming Liu, Gianfranco Doretto
- [Paper]
-
Boosting adaptive linear weak classifiers for online learning and tracking (CVPR 2008)
- Toufiq Parag, Fatih Porikli, Ahmed M. Elgammal
- [Paper]
-
Detection with multi-exit asymmetric boosting (CVPR 2008)
- Minh-Tri Pham, V-D. D. Hoang, Tat-Jen Cham
- [Paper]
-
Boosting ordinal features for accurate and fast iris recognition (CVPR 2008)
- Zhaofeng He, Zhenan Sun, Tieniu Tan, Xianchao Qiu, Cheng Zhong, Wenbo Dong
- [Paper]
-
Adaptive and compact shape descriptor by progressive feature combination and selection with boosting (CVPR 2008)
- Cheng Chen, Yueting Zhuang, Jun Xiao, Fei Wu
- [Paper]
-
Boosting Relational Sequence Alignments (ICDM 2008)
- Andreas Karwath, Kristian Kersting, Niels Landwehr
- [Paper]
-
Boosting with incomplete information (ICML 2008)
- Gholamreza Haffari, Yang Wang, Shaojun Wang, Greg Mori, Feng Jiao
- [Paper]
-
ManifoldBoost: stagewise function approximation for fully-, semi- and un-supervised learning (ICML 2008)
- Nicolas Loeff, David A. Forsyth, Deepak Ramachandran
- [Paper]
-
Random classification noise defeats all convex potential boosters (ICML 2008)
- Philip M. Long, Rocco A. Servedio
- [Paper]
-
Multi-class cost-sensitive boosting with p-norm loss functions (KDD 2008)
- Aurelie C. Lozano, Naoki Abe
- [Paper]
-
MCBoost: Multiple Classifier Boosting for Perceptual Co-clustering of Images and Visual Features (NIPS 2008)
- Tae-Kyun Kim, Roberto Cipolla
- [Paper]
-
PSDBoost: Matrix-Generation Linear Programming for Positive Semidefinite Matrices Learning (NIPS 2008)
- Chunhua Shen, Alan Welsh, Lei Wang
- [Paper]
-
On the Design of Loss Functions for Classification: theory, robustness to outliers, and SavageBoost (NIPS 2008)
- Hamed Masnadi-Shirazi, Nuno Vasconcelos
- [Paper]
-
Adaptive Martingale Boosting (NIPS 2008)
- Philip M. Long, Rocco A. Servedio
- [Paper]
-
A boosting algorithm for learning bipartite ranking functions with partially labeled data (SIGIR 2008)
- Massih-Reza Amini, Tuong-Vinh Truong, Cyril Goutte
- [Paper]
-
Using Error-Correcting Output Codes with Model-Refinement to Boost Centroid Text Classifier (ACL 2007)
- Songbo Tan
- [Paper]
-
Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression (CVPR 2007)
- Alessandro Bissacco, Ming-Hsuan Yang, Stefano Soatto
- [Paper]
-
Generic Face Alignment using Boosted Appearance Model (CVPR 2007)
- Xiaoming Liu
- [Paper]
-
Eigenboosting: Combining Discriminative and Generative Information (CVPR 2007)
- Helmut Grabner, Peter M. Roth, Horst Bischof
- [Paper]
-
Online Learning Asymmetric Boosted Classifiers for Object Detection (CVPR 2007)
- Minh-Tri Pham, Tat-Jen Cham
- [Paper]
-
Improving Part based Object Detection by Unsupervised Online Boosting (CVPR 2007)
- Bo Wu, Ram Nevatia
- [Paper]
-
A Specialized Processor Suitable for AdaBoost-Based Detection with Haar-like Features (CVPR 2007)
- Masayuki Hiromoto, Kentaro Nakahara, Hiroki Sugano, Yukihiro Nakamura, Ryusuke Miyamoto
- [Paper]
-
Simultaneous Object Detection and Segmentation by Boosting Local Shape Feature based Classifier (CVPR 2007)
- Bo Wu, Ram Nevatia
- [Paper]
-
Compositional Boosting for Computing Hierarchical Image Structures (CVPR 2007)
- Tianfu Wu, Gui-Song Xia, Song Chun Zhu
- [Paper]
-
Boosting Coded Dynamic Features for Facial Action Units and Facial Expression Recognition (CVPR 2007)
- Peng Yang, Qingshan Liu, Dimitris N. Metaxas
- [Paper]
-
Object Classification in Visual Surveillance Using Adaboost (CVPR 2007)
- John-Paul Renno, Dimitrios Makris, Graeme A. Jones
- [Paper]
-
A boosting regression approach to medical anatomy detection (CVPR 2007)
- Shaohua Kevin Zhou, Jinghao Zhou, Dorin Comaniciu
- [Paper]
-
Joint Real-time Object Detection and Pose Estimation Using Probabilistic Boosting Network (CVPR 2007)
- Jingdan Zhang, Shaohua Kevin Zhou, Leonard McMillan, Dorin Comaniciu
- [Paper]
-
Kernel Sharing With Joint Boosting For Multi-Class Concept Detection (CVPR 2007)
- Wei Jiang, Shih-Fu Chang, Alexander C. Loui
- [Paper]
-
Scale-Space Based Weak Regressors for Boosting (ECML 2007)
- Jin Hyeong Park, Chandan K. Reddy
- [Paper]
-
Avoiding Boosting Overfitting by Removing Confusing Samples (ECML 2007)
- Alexander Vezhnevets, Olga Barinova
- [Paper]
-
DynamicBoost: Boosting Time Series Generated by Dynamical Systems (ICCV 2007)
- René Vidal, Paolo Favaro
- [Paper]
-
Incremental Learning of Boosted Face Detector (ICCV 2007)
- Chang Huang, Haizhou Ai, Takayoshi Yamashita, Shihong Lao, Masato Kawade
- [Paper]
-
Gradient Feature Selection for Online Boosting (ICCV 2007)
- Xiaoming Liu, Ting Yu
- [Paper]
-
Fast training and selection of Haar features using statistics in boosting-based face detection (ICCV 2007)
- Minh-Tri Pham, Tat-Jen Cham
- [Paper]
-
Cluster Boosted Tree Classifier for Multi-View%2C Multi-Pose Object Detection (ICCV 2007)
- Bo Wu, Ramakant Nevatia
- [Paper]
-
Asymmetric boosting (ICML 2007)
- Hamed Masnadi-Shirazi, Nuno Vasconcelos
- [Paper]
-
Boosting for transfer learning (ICML 2007)
- Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu
- [Paper]
-
Gradient boosting for kernelized output spaces (ICML 2007)
- Pierre Geurts, Louis Wehenkel, Florence d'Alché-Buc
- [Paper]
-
Boosting a Complete Technique to Find MSS and MUS Thanks to a Local Search Oracle (IJCAI 2007)
- Éric Grégoire, Bertrand Mazure, Cédric Piette
- [Paper]
-
Training Conditional Random Fields Using Virtual Evidence Boosting (IJCAI 2007)
- Lin Liao, Tanzeem Choudhury, Dieter Fox, Henry A. Kautz
- [Paper]
-
Simple Training of Dependency Parsers via Structured Boosting (IJCAI 2007)
- Qin Iris Wang, Dekang Lin, Dale Schuurmans
- [Paper]
-
Real Boosting a la Carte with an Application to Boosting Oblique Decision Tree (IJCAI 2007)
- Claudia Henry, Richard Nock, Frank Nielsen
- [Paper]
-
Managing Domain Knowledge and Multiple Models with Boosting (IJCAI 2007)
- Peng Zang, Charles Lee Isbell Jr.
- [Paper]
-
Model-shared subspace boosting for multi-label classification (KDD 2007)
- Rong Yan, Jelena Tesic, John R. Smith
- [Paper]
-
Regularized Boost for Semi-Supervised Learning (NIPS 2007)
- Ke Chen, Shihai Wang
- [Paper]
-
Boosting Algorithms for Maximizing the Soft Margin (NIPS 2007)
- Manfred K. Warmuth, Karen A. Glocer, Gunnar Rätsch
- [Paper]
-
McRank: Learning to Rank Using Multiple Classification and Gradient Boosting (NIPS 2007)
- Ping Li, Christopher J. C. Burges, Qiang Wu
- [Paper]
-
One-Pass Boosting (NIPS 2007)
- Zafer Barutçuoglu, Philip M. Long, Rocco A. Servedio
- [Paper]
-
Boosting the Area under the ROC Curve (NIPS 2007)
- Philip M. Long, Rocco A. Servedio
- [Paper]
-
FilterBoost: Regression and Classification on Large Datasets (NIPS 2007)
- Joseph K. Bradley, Robert E. Schapire
- [Paper]
-
A General Boosting Method and its Application to Learning Ranking Functions for Web Search (NIPS 2007)
- Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke Chen, Gordon Sun
- [Paper]
-
Efficient Multiclass Boosting Classification with Active Learning (SDM 2007)
- Jian Huang, Seyda Ertekin, Yang Song, Hongyuan Zha, C. Lee Giles
- [Paper]
-
AdaRank: a boosting algorithm for information retrieval (SIGIR 2007)
- Jun Xu, Hang Li
- [Paper]
-
Gradient Boosting for Sequence Alignment (AAAI 2006)
- Charles Parker, Alan Fern, Prasad Tadepalli
- [Paper]
-
Boosting Kernel Models for Regression (ICDM 2006)
- Ping Sun, Xin Yao
- [Paper]
-
Boosting for Learning Multiple Classes with Imbalanced Class Distribution (ICDM 2006)
- Yanmin Sun, Mohamed S. Kamel, Yang Wang
- [Paper]
-
Boosting the Feature Space: Text Classification for Unstructured Data on the Web (ICDM 2006)
- Yang Song, Ding Zhou, Jian Huang, Isaac G. Councill, Hongyuan Zha, C. Lee Giles
- [Paper]
-
Totally corrective boosting algorithms that maximize the margin (ICML 2006)
- Manfred K. Warmuth, Jun Liao, Gunnar Rätsch
- [Paper]
-
How boosting the margin can also boost classifier complexity (ICML 2006)
- Lev Reyzin, Robert E. Schapire
- [Paper]
-
Multiclass boosting with repartitioning (ICML 2006)
- Ling Li
- [Paper]
-
AdaBoost is Consistent (NIPS 2006)
- Peter L. Bartlett, Mikhail Traskin
- [Paper]
-
Boosting Structured Prediction for Imitation Learning (NIPS 2006)
- Nathan D. Ratliff, David M. Bradley, J. Andrew Bagnell, Joel E. Chestnutt
- [Paper]
-
Chained Boosting (NIPS 2006)
- Christian R. Shelton, Wesley Huie, Kin Fai Kan
- [Paper]
-
When Efficient Model Averaging Out-Performs Boosting and Bagging (PKDD 2006)
- Ian Davidson, Wei Fan
- [Paper]
-
Semantic Place Classification of Indoor Environments with Mobile Robots Using Boosting (AAAI 2005)
- Axel Rottmann, Óscar Martínez Mozos, Cyrill Stachniss, Wolfram Burgard
- [Paper]
-
Boosting-based Parse Reranking with Subtree Features (ACL 2005)
- Taku Kudo, Jun Suzuki, Hideki Isozaki
- [Paper]
-
Using RankBoost to compare retrieval systems (CIKM 2005)
- Huyen-Trang Vu, Patrick Gallinari
- [Paper]
-
Classifier Fusion Using Shared Sampling Distribution for Boosting (ICDM 2005)
- Costin Barbu, Raja Tanveer Iqbal, Jing Peng
- [Paper]
-
Semi-Supervised Mixture of Kernels via LPBoost Methods (ICDM 2005)
- Jinbo Bi, Glenn Fung, Murat Dundar, R. Bharat Rao
- [Paper]
-
Efficient discriminative learning of Bayesian network classifier via boosted augmented naive Bayes (ICML 2005)
- Yushi Jing, Vladimir Pavlovic, James M. Rehg
- [Paper]
-
Unifying the error-correcting and output-code AdaBoost within the margin framework (ICML 2005)
- Yijun Sun, Sinisa Todorovic, Jian Li, Dapeng Wu
- [Paper]
-
A smoothed boosting algorithm using probabilistic output codes (ICML 2005)
- Rong Jin, Jian Zhang
- [Paper]
-
Robust boosting and its relation to bagging (KDD 2005)
- Saharon Rosset
- [Paper]
-
Efficient computations via scalable sparse kernel partial least squares and boosted latent features (KDD 2005)
- Michinari Momma
- [Paper]
-
Multiple Instance Boosting for Object Detection (NIPS 2005)
- Paul A. Viola, John C. Platt, Cha Zhang
- [Paper]
-
Convergence and Consistency of Regularized Boosting Algorithms with Stationary B-Mixing Observations (NIPS 2005)
- Aurelie C. Lozano, Sanjeev R. Kulkarni, Robert E. Schapire
- [Paper]
-
Boosted decision trees for word recognition in handwritten document retrieval (SIGIR 2005)
- Nicholas R. Howe, Toni M. Rath, R. Manmatha
- [Paper]
-
Obtaining Calibrated Probabilities from Boosting (UAI 2005)
- Alexandru Niculescu-Mizil, Rich Caruana
- [Paper]
-
Online Parallel Boosting (AAAI 2004)
- Jesse A. Reichler, Harlan D. Harris, Michael A. Savchenko
- [Paper]
-
A Boosting Approach to Multiple Instance Learning (ECML 2004)
- Peter Auer, Ronald Ortner
- [Paper]
-
A Boosting Algorithm for Classification of Semi-Structured Text (EMNLP 2004)
- Taku Kudo, Yuji Matsumoto
- [Paper]
-
Text Classification by Boosting Weak Learners based on Terms and Concepts (ICDM 2004)
- Stephan Bloehdorn, Andreas Hotho
- [Paper]
-
Boosting grammatical inference with confidence oracles (ICML 2004)
- Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier
- [Paper]
-
Surrogate maximization/minimization algorithms for AdaBoost and the logistic regression model (ICML 2004)
- Zhihua Zhang, James T. Kwok, Dit-Yan Yeung
- [Paper]
-
Training conditional random fields via gradient tree boosting (ICML 2004)
- Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov
- [Paper]
-
Boosting margin based distance functions for clustering (ICML 2004)
- Tomer Hertz, Aharon Bar-Hillel, Daphna Weinshall
- [Paper]
-
Column-generation boosting methods for mixture of kernels (KDD 2004)
- Jinbo Bi, Tong Zhang, Kristin P. Bennett
- [Paper]
-
Optimal Aggregation of Classifiers and Boosting Maps in Functional Magnetic Resonance Imaging (NIPS 2004)
- Vladimir Koltchinskii, Manel Martínez-Ramón, Stefan Posse
- [Paper]
-
Boosting on Manifolds: Adaptive Regularization of Base Classifiers (NIPS 2004)
- Balázs Kégl, Ligen Wang
- [Paper]
-
Contextual Models for Object Detection Using Boosted Random Fields (NIPS 2004)
- Antonio Torralba, Kevin P. Murphy, William T. Freeman
- [Paper]
-
Generalization Error and Algorithmic Convergence of Median Boosting (NIPS 2004)
- Balázs Kégl
- [Paper]
-
An Application of Boosting to Graph Classification (NIPS 2004)
- Taku Kudo, Eisaku Maeda, Yuji Matsumoto
- [Paper]
-
Logistic Regression and Boosting for Labeled Bags of Instances (PAKDD 2004)
- Xin Xu, Eibe Frank
- [Paper]
-
Fast and Light Boosting for Adaptive Mining of Data Streams (PAKDD 2004)
- Fang Chu, Carlo Zaniolo
- [Paper]
-
On Boosting and the Exponential Loss (AISTATS 2003)
- Abraham J. Wyner
- [Paper]
-
Boosting support vector machines for text classification through parameter-free threshold relaxation (CIKM 2003)
- James G. Shanahan, Norbert Roma
- [Paper]
-
Learning cross-document structural relationships using boosting (CIKM 2003)
- Zhu Zhang, Jahna Otterbacher, Dragomir R. Radev
- [Paper]
-
On Boosting Improvement: Error Reduction and Convergence Speed-Up (ECML 2003)
- Marc Sebban, Henri-Maxime Suchier
- [Paper]
-
Boosting Lazy Decision Trees (ICML 2003)
- Xiaoli Zhang Fern, Carla E. Brodley
- [Paper]
-
On the Convergence of Boosting Procedures (ICML 2003)
- Tong Zhang, Bin Yu
- [Paper]
-
Linear Programming Boosting for Uneven Datasets (ICML 2003)
- Jure Leskovec, John Shawe-Taylor
- [Paper]
-
Monte Carlo Theory as an Explanation of Bagging and Boosting (IJCAI 2003)
- Roberto Esposito, Lorenza Saitta
- [Paper]
-
On the Dynamics of Boosting (NIPS 2003)
- Cynthia Rudin, Ingrid Daubechies, Robert E. Schapire
- [Paper]
-
Mutual Boosting for Contextual Inference (NIPS 2003)
- Michael Fink, Pietro Perona
- [Paper]
-
Boosting versus Covering (NIPS 2003)
- Kohei Hatano, Manfred K. Warmuth
- [Paper]
-
Multiple-Instance Learning via Disjunctive Programming Boosting (NIPS 2003)
- Stuart Andrews, Thomas Hofmann
- [Paper]
-
Averaged Boosting: A Noise-Robust Ensemble Method (PAKDD 2003)
- Yongdai Kim
- [Paper]
-
SMOTEBoost: Improving Prediction of the Minority Class in Boosting (PKDD 2003)
- Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, Kevin W. Bowyer
- [Paper]
-
Minimum Majority Classification and Boosting (AAAI 2002)
- Philip M. Long
- [Paper]
-
Ranking Algorithms for Named Entity Extraction: Boosting and the Voted Perceptron (ACL 2002)
- Michael Collins
- [Paper]
-
Boosting to correct inductive bias in text classification (CIKM 2002)
- Yan Liu, Yiming Yang, Jaime G. Carbonell
- [Paper]
-
How to Make AdaBoost.M1 Work for Weak Base Classifiers by Changing Only One Line of the Code (ECML 2002)
- Günther Eibl, Karl Peter Pfeiffer
- [Paper]
-
Scaling Boosting by Margin-Based Inclusionof Features and Relations (ECML 2002)
- Susanne Hoche, Stefan Wrobel
- [Paper]
-
A Robust Boosting Algorithm (ECML 2002)
- Richard Nock, Patrice Lefaucheur
- [Paper]
-
iBoost: Boosting Using an instance-Based Exponential Weighting Scheme (ECML 2002)
- Stephen Kwek, Chau Nguyen
- [Paper]
-
Boosting Density Function Estimators (ECML 2002)
- Franck Thollard, Marc Sebban, Philippe Ézéquel
- [Paper]
-
Statistical Behavior and Consistency of Support Vector Machines, Boosting, and Beyond (ICML 2002)
- Tong Zhang
- [Paper]
-
A Boosted Maximum Entropy Model for Learning Text Chunking (ICML 2002)
- Seong-Bae Park, Byoung-Tak Zhang
- [Paper]
-
Towards Large Margin Speech Recognizers by Boosting and Discriminative Training (ICML 2002)
- Carsten Meyer, Peter Beyerlein
- [Paper]
-
Incorporating Prior Knowledge into Boosting (ICML 2002)
- Robert E. Schapire, Marie Rochery, Mazin G. Rahim, Narendra K. Gupta
- [Paper]
-
Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation (ICML 2002)
- Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, János A. Csirik
- [Paper]
-
MARK: a boosting algorithm for heterogeneous kernel models (KDD 2002)
- Kristin P. Bennett, Michinari Momma, Mark J. Embrechts
- [Paper]
-
Predicting rare classes: can boosting make any weak learner strong (KDD 2002)
- Mahesh V. Joshi, Ramesh C. Agarwal, Vipin Kumar
- [Paper]
-
Kernel Design Using Boosting (NIPS 2002)
- Koby Crammer, Joseph Keshet, Yoram Singer
- [Paper]
-
FloatBoost Learning for Classification (NIPS 2002)
- Stan Z. Li, ZhenQiu Zhang, Heung-Yeung Shum, HongJiang Zhang
- [Paper]
-
Discriminative Learning for Label Sequences via Boosting (NIPS 2002)
- Yasemin Altun, Thomas Hofmann, Mark Johnson
- [Paper]
-
Boosting Density Estimation (NIPS 2002)
- Saharon Rosset, Eran Segal
- [Paper]
-
Self Supervised Boosting (NIPS 2002)
- Max Welling, Richard S. Zemel, Geoffrey E. Hinton
- [Paper]
-
Boosted Dyadic Kernel Discriminants (NIPS 2002)
- Baback Moghaddam, Gregory Shakhnarovich
- [Paper]
-
A Method to Boost Support Vector Machines (PAKDD 2002)
- Lili Diao, Keyun Hu, Yuchang Lu, Chunyi Shi
- [Paper]
-
A Method to Boost Naive Bayesian Classifiers (PAKDD 2002)
- Lili Diao, Keyun Hu, Yuchang Lu, Chunyi Shi
- [Paper]
-
Predicting Rare Classes: Comparing Two-Phase Rule Induction to Cost-Sensitive Boosting (PKDD 2002)
- Mahesh V. Joshi, Ramesh C. Agarwal, Vipin Kumar
- [Paper]
-
Iterative Data Squashing for Boosting Based on a Distribution-Sensitive Distance (PKDD 2002)
- Yuta Choki, Einoshin Suzuki
- [Paper]
-
Staged Mixture Modelling and Boosting (UAI 2002)
- Christopher Meek, Bo Thiesson, David Heckerman
- [Paper]
-
Advances in Boosting (UAI 2002)
- Robert E. Schapire
- [Paper]
-
Is regularization unnecessary for boosting? (AISTATS 2001)
- Wenxin Jiang
- [Paper]
-
Online Bagging and Boosting (AISTATS 2001)
- Nikunj C. Oza, Stuart J. Russell
- [Paper]
-
Text Categorization Using Transductive Boosting (ECML 2001)
- Hirotoshi Taira, Masahiko Haruno
- [Paper]
-
Improving Term Extraction by System Combination Using Boosting (ECML 2001)
- Jordi Vivaldi, Lluís Màrquez, Horacio Rodríguez
- [Paper]
-
Analysis of the Performance of AdaBoost.M2 for the Simulated Digit-Recognition-Example (ECML 2001)
- Günther Eibl, Karl Peter Pfeiffer
- [Paper]
-
On the Practice of Branching Program Boosting (ECML 2001)
- Tapio Elomaa, Matti Kääriäinen
- [Paper]
-
Boosting Mixture Models for Semi-supervised Learning (ICANN 2001)
- Yves Grandvalet, Florence d'Alché-Buc, Christophe Ambroise
- [[Paper]](https://link.springer.com/chapter/10.1007/3-540-44668-0_7
-
A Comparison of Stacking with Meta Decision Trees to Bagging, Boosting, and Stacking with other Methods (ICDM 2001)
- Bernard Zenko, Ljupco Todorovski, Saso Dzeroski
- [Paper]
-
Using Boosting to Simplify Classification Models (ICDM 2001)
- Virginia Wheway
- [Paper]
-
Evaluating Boosting Algorithms to Classify Rare Classes: Comparison and Improvements (ICDM 2001)
-
Boosting Neighborhood-Based Classifiers (ICML 2001)
- Marc Sebban, Richard Nock, Stéphane Lallich
- [Paper]
-
Boosting Noisy Data (ICML 2001)
- Abba Krieger, Chuan Long, Abraham J. Wyner
- [Paper]
-
Some Theoretical Aspects of Boosting in the Presence of Noisy Data (ICML 2001)
- Wenxin Jiang
- [Paper]
-
Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection (ICML 2001)
- Sanmay Das
- [Paper]
-
The distributed boosting algorithm (KDD 2001)
- Aleksandar Lazarevic, Zoran Obradovic
- [Paper]
-
Experimental comparisons of online and batch versions of bagging and boosting (KDD 2001)
- Nikunj C. Oza, Stuart J. Russell
- [Paper]
-
Semi-supervised MarginBoost (NIPS 2001)
- Florence d'Alché-Buc, Yves Grandvalet, Christophe Ambroise
- [Paper]
-
Boosting and Maximum Likelihood for Exponential Models (NIPS 2001)
- Guy Lebanon, John D. Lafferty
- [Paper]
-
Fast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade (NIPS 2001)
- Paul A. Viola, Michael J. Jones
- [Paper]
-
Boosting Localized Classifiers in Heterogeneous Databases (SDM 2001)
- Aleksandar Lazarevic, Zoran Obradovic
- [Paper]
-
Boosted Wrapper Induction (AAAI 2000)
- Dayne Freitag, Nicholas Kushmerick
- [Paper]
-
An Improved Boosting Algorithm and its Application to Text Categorization (CIKM 2000)
- Fabrizio Sebastiani, Alessandro Sperduti, Nicola Valdambrini
- [Paper]
-
Boosting for Document Routing (CIKM 2000)
- Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram Singer, Amit Singhal
- [Paper]
-
On the Boosting Pruning Problem (ECML 2000)
- Christino Tamon, Jie Xiang
- [Paper]
-
Boosting Applied to Word Sense Disambiguation (ECML 2000)
- Gerard Escudero, Lluís Màrquez, German Rigau
- [Paper]
-
An Empirical Study of MetaCost Using Boosting Algorithms (ECML 2000)
- Kai Ming Ting
- [Paper]
-
FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness (ICML 2000)
- Joseph O'Sullivan, John Langford, Rich Caruana, Avrim Blum
- [Paper]
-
Comparing the Minimum Description Length Principle and Boosting in the Automatic Analysis of Discourse (ICML 2000)
- Tadashi Nomoto, Yuji Matsumoto
- [Paper]
-
A Boosting Approach to Topic Spotting on Subdialogues (ICML 2000)
- Kary Myers, Michael J. Kearns, Satinder P. Singh, Marilyn A. Walker
- [Paper]
-
A Comparative Study of Cost-Sensitive Boosting Algorithms (ICML 2000)
- Kai Ming Ting
- [Paper]
-
Boosting a Positive-Data-Only Learner (ICML 2000)
- Andrew R. Mitchell
- [Paper]
-
A Column Generation Algorithm For Boosting (ICML 2000)
- Kristin P. Bennett, Ayhan Demiriz, John Shawe-Taylor
- [Paper]
-
A Gradient-Based Boosting Algorithm for Regression Problems (NIPS 2000)
- Richard S. Zemel, Toniann Pitassi
- [Paper]
-
Weak Learners and Improved Rates of Convergence in Boosting (NIPS 2000)
- Shie Mannor, Ron Meir
- [Paper]
-
Adaptive Boosting for Spatial Functions with Unstable Driving Attributes (PAKDD 2000)
- Aleksandar Lazarevic, Tim Fiez, Zoran Obradovic
- [Paper]
-
Scaling Up a Boosting-Based Learner via Adaptive Sampling (PAKDD 2000)
- Carlos Domingo, Osamu Watanabe
- [Paper]
-
Learning First Order Logic Time Series Classifiers: Rules and Boosting (PKDD 2000)
- Juan J. Rodríguez Diez, Carlos Alonso González, Henrik Boström
- [Paper]
-
Bagging and Boosting with Dynamic Integration of Classifiers (PKDD 2000)
- Alexey Tsymbal, Seppo Puuronen
- [Paper]
-
Text filtering by boosting naive bayes classifiers (SIGIR 2000)
- Yu-Hwan Kim, Shang-Yoon Hahn, Byoung-Tak Zhang
- [Paper]
-
Boosting methodology for regression problems (AISTATS 1999)
- Greg Ridgeway, David Madigan, Thomas Richardson
- [Paper]
-
Boosting Applied to Tagging and PP Attachment (EMNLP 1999)
- Steven Abney, Robert E. Schapire, Yoram Singer
- [Paper]
-
Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ICML 1999)
- Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting
- [Paper]
-
AdaCost: Misclassification Cost-Sensitive Boosting (ICML 1999)
- Wei Fan, Salvatore J. Stolfo, Junxin Zhang, Philip K. Chan
- [Paper]
-
Boosting a Strong Learner: Evidence Against the Minimum Margin (ICML 1999)
- Michael Bonnell Harries
- [Paper]
-
Boosting Algorithms as Gradient Descent (NIPS 1999)
- Llew Mason, Jonathan Baxter, Peter L. Bartlett, Marcus R. Frean
- [Paper]
-
Boosting with Multi-Way Branching in Decision Trees (NIPS 1999)
- Yishay Mansour, David A. McAllester
- [Paper]
-
Potential Boosters (NIPS 1999)
- Nigel Duffy, David P. Helmbold
- [Paper]
-
An Efficient Boosting Algorithm for Combining Preferences (ICML 1998)
- Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer
- [Paper]
-
Query Learning Strategies Using Boosting and Bagging (ICML 1998)
- Naoki Abe, Hiroshi Mamitsuka
- [Paper]
-
Regularizing AdaBoost (NIPS 1998)
- Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller
- [Paper]
-
Boosting the margin: A new explanation for the effectiveness of voting methods (ICML 1997)
- Robert E. Schapire, Yoav Freund, Peter Barlett, Wee Sun Lee
- [Paper]
-
Using output codes to boost multiclass learning problems (ICML 1997)
- Robert E. Schapire
- [Paper]
-
Improving Regressors using Boosting Techniques (ICML 1997)
- Harris Drucker
- [Paper]
-
Pruning Adaptive Boosting (ICML 1997)
- Dragos D. Margineantu, Thomas G. Dietterich
- [Paper]
-
Training Methods for Adaptive Boosting of Neural Networks (NIPS 1997)
- Holger Schwenk, Yoshua Bengio
- [Paper]
- Experiments with a New Boosting Algorithm (ICML 1996)
- Yoav Freund, Robert E. Schapire
- [Paper]
- Boosting Decision Trees (NIPS 1995)
- Harris Drucker, Corinna Cortes
- [Paper]
- Boosting and Other Machine Learning Algorithms (ICML 1994)
- Harris Drucker, Corinna Cortes, Lawrence D. Jackel, Yann LeCun, Vladimir Vapnik
- [Paper]