Computer Vision project for the analysis of indoor house scenes including a furniture retrieval system.
-
Download from drive (request access to authors) the folder containing all trained models and dataset.
-
Copy all dataset folders to /retrieval folder of the project.
-
Move 'model_mask_default.pt' and 'model_mask_modified.pt' to /Indoor-Scene-Understanding
-
Move 'dataset_embedding.pt' to /Indoor-Scene-Understanding/retrieval/method_autoencoder
-
Move 'descriptors.pkl' to /Indoor-Scene-Understanding/retrieval/method_SIFT
-
Move 'MLP_model.pt', 'randomforest_model.pt' and 'dataset_all_objects.csv' to /Indoor-Scene-Understanding/classification
-
Install the requirements.txt in your virtual environment
pip install -r requirements.txt
In the root folder execute:
python execute_pipeline.py -img test_images/bedroom.jpg -mdl modified -rtv autoencoder -clf forest
Available options mdl : ['default', 'modified'], rtv : ['sift','dhash','autoencoder'], -clf : ['forest', 'mlp']