Adam Khakhar and Jacob Buckman
Paper
Citation Information:
@misc{https://doi.org/10.48550/arxiv.2211.07447,
doi = {10.48550/ARXIV.2211.07447},
url = {https://arxiv.org/abs/2211.07447},
author = {Khakhar, Adam and Buckman, Jacob},
keywords = {Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Neural Regression For Scale-Varying Targets},
publisher = {arXiv},
year = {2022},
copyright = {arXiv.org perpetual, non-exclusive license}
}
See examples of training on datasets with various model configurations and training objectives in the experiments directory. At a high level, training includes instatiating a dataset, model, and training class.
DataSet impelementations for one-dimensional functions, MNIST, and the Amazon Review DataSet are in src/datasets
.
Feed Forward, Transformer, and CNN models are implemented. Also implemented is the AutoRegressive Head, implementing the paper's main contribution, autoregressive regression. These models in src/models
can be combined in an Encoder-Decoder framework using the EncoderDecoder class.
Various training objectives can be used to train the models. Additionally, different error metrics can be computed at each gradient update step. The set of classes in the src/training
implement training with the following objectives: mean squared error, mean absolute error, and autoregressive regression.
.
├── experiments
│ └── single_target_multi_distribution_experiments
│ ├── mnist_arr_sin_log.py
│ ├── mnist_mse_mae_sin_log.py
│ ├── one_dim_one_target_arr_sin_log.py
│ └── one_dim_one_target_mse_mae_sin_log.py
├── LICENSE
├── README.md
├── src
│ ├── datasets
│ │ ├── MNISTDataSet.py
│ │ ├── MNISTMultiDistributionSingleTarget.py
│ │ ├── OneDimDataSet.py
│ │ ├── OneDimMultiDistributionSingleTarget.py
│ │ ├── ReviewDataSet.py
│ │ └── TestTransformerDataSet.py
│ ├── models
│ │ ├── AutoRegressiveHead.py
│ │ ├── CNN.py
│ │ ├── EncoderDecoder.py
│ │ ├── FeedForward.py
│ │ └── Transformer.py
│ └── training
│ ├── ARRTrain.py
│ ├── MAETrain.py
│ ├── MSETrain.py
│ └── Train.py
└── utils
├── create_plots.py
├── PositionalEncoding.py
├── target_functions.py
└── utils.py