Paper list for equivariant neural network. Work-in-progress.
Feel free to suggest relevant papers in the following format.
**Group Equivariant Convolutional Networks**
Taco S. Cohen, Max Welling ICML 2016 [paper](https://arxiv.org/pdf/1602.07576.pdf)
Acknowledgement: I would like to thank Maurice Weiler, Fabian Fuchs, Tess Smidt, Rui Wang, David Pfau, Jonas Köhler, Taco Cohen, Gregor Simm, Erik J Bekkers, Jean-Baptiste Cordonnier, David W. Romero, Ivan Sosnovik, Kostas Daniilidis for paper suggestions! Thank Weihao Xia for helping out typesetting!
- Equivariance and Group convolution
- Theory
- Equivariant Density Estimation and Sampling
- Application
- Permutation Equivariance
- Talk and Tutorial
- TO READ
-
Group Equivariant Convolutional Networks
Taco S. Cohen, Max Welling ICML 2016 paper
Note: first paper; discrete group; -
Steerable CNNs
Taco S. Cohen, Max Welling ICLR 2017 paper -
Harmonic Networks: Deep Translation and Rotation Equivariance
Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, Gabriel J. Brostow CVPR 2017 paper -
Spherical CNNs
Taco S. Cohen, Mario Geiger, Jonas Koehler, Max Welling ICLR 2018 best paper paper
Note: use generalized FFT to speed up convolution on$S^2$ and$SO(3)$ -
Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
Risi Kondor, Zhen Lin, Shubhendu Trivedi NeurIPS 2018 paper
Note: perform equivariant nonlinearity in Fourier space; -
General E(2)-Equivariant Steerable CNNs
Maurice Weiler, Gabriele Cesa NeurIPS 2019 paper
Note: nice benchmark on different reprsentations -
Learning Steerable Filters for Rotation Equivariant CNNs
Maurice Weiler, Fred A. Hamprecht, Martin Storath CVPR 2018 paper
Note: group convolutions, kernels parameterized in circular harmonic basis (steerable filters); -
Learning SO(3) Equivariant Representations with Spherical CNNs
Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, Kostas Daniilidis ECCV 2018 paper
Note: SO(3) equivariance; zonal filter -
Polar Transformer Networks
Carlos Esteves, Christine Allen-Blanchette, Xiaowei Zhou, Kostas Daniilidis ICLR 2018 paper -
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, Taco Cohen NeurIPS 2018 paper
Note: SE(3) equivariance; characterize the basis of steerable kernel -
Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley paper
Note: SE(3) equivariance for point clouds -
Equivariant Multi-View Networks
Carlos Esteves, Yinshuang Xu, Christine Allen-Blanchette, Kostas Daniilidis ICCV 2019 paper -
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, Max Welling ICML 2019 paper, talk
Note: gauge equivariance on general manifold -
Cormorant: Covariant Molecular Neural Networks
Brandon Anderson, Truong-Son Hy, Risi Kondor NeurIPS 2019 paper -
Deep Scale-spaces: Equivariance Over Scale
Daniel Worrall, Max Welling NeurIPS 2019 paper -
Scale-Equivariant Steerable Networks
Ivan Sosnovik, Michał Szmaja, Arnold Smeulders ICLR 2020 paper -
B-Spline CNNs on Lie Groups
Erik J Bekkers ICLR 2020 paper -
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, Max Welling NeurIPS 2020 paper, blog
Note: TFN + equivariant self-attention; improved spherical harmonics computation -
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
Pim de Haan, Maurice Weiler, Taco Cohen, Max Welling ICLR 2021 paper
Note: anisotropic gauge equivariant kernels + message passing by parallel transporting features over mesh edges -
Lorentz Group Equivariant Neural Network for Particle Physics
Alexander Bogatskiy, Brandon Anderson, Jan T. Offermann, Marwah Roussi, David W. Miller, Risi Kondor ICML 2020 paper
Note: SO(1, 3) equivariance -
CNNs on Surfaces using Rotation-Equivariant Features
Ruben Wiersma, Elmar Eisemann, Klaus Hildebrandt SIGGRAPH 2020 paper, code -
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi, Samuel Stanton, Pavel Izmailov, Andrew Gordon Wilson ICML 2020 paper
Note: fairly generic architecture; use Monte Carlo sampling to achieve equivariance in expectation; -
Spin-Weighted Spherical CNNs
Carlos Esteves, Ameesh Makadia, Kostas Daniilidis NeurIPS 2020 paper
Note: anisotropic filter for vector field on sphere -
Learning Invariances in Neural Networks
Gregory Benton, Marc Finzi, Pavel Izmailov, Andrew Gordon Wilson NeurIPS 2020 paper
Note: very interesting approch; enfore "soft" invariance via learning over both model parameters and distributions over augmentations -
LieTransformer: Equivariant self-attention for Lie Groups
Michael Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, Hyunjik Kim paper
Note: equivariant self attention to arbitrary Lie groups and their discrete subgroups -
Co-Attentive Equivariant Neural Networks: Focusing Equivariance On Transformations Co-Occurring In Data
David W. Romero, Mark Hoogendoorn ICLR 2020 paper -
Attentive Group Equivariant Convolutional Networks
David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn ICML 2020 paper -
Wavelet Networks: Scale Equivariant Learning From Raw Waveforms
David W. Romero, Erik J. Bekkers, Jakub M. Tomczak, Mark Hoogendoorn paper -
Group Equivariant Stand-Alone Self-Attention For Vision
David W. Romero, Jean-Baptiste Cordonnier ICLR 2021 paper -
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang, Robin Walters, Rose Yu ICLR 2021 paper -
MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
Elise van der Pol, Daniel E. Worrall, Herke van Hoof, Frans A. Oliehoek, Max Welling NeurIPS 2020 paper -
Isometric Transformation Invariant and Equivariant Graph Convolutional Networks
Masanobu Horie, Naoki Morita, Toshiaki Hishinuma, Yu Ihara, Naoto Mitsume ICLR 2021 paper -
E(n) Equivariant Graph Neural Networks
Victor Garcia Satorras, Emiel Hoogeboom, Max Welling ICML 2021 paper
Note: a simple alternative that achieves E(n) equivariance -
Vector Neurons: A General Framework for SO(3)-Equivariant Networks
Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, Leonidas Guibas paper Note: a simple MLP for type-1 features -
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt, Oliver T. Unke, Michael Gastegger ICML 2021 paper -
Field Convolutions For Surface CNNs
Thomas W. Mitchel, Vladimir G. Kim, Michael Kazhdan ICCV 2021 (Oral) paper -
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar, David W.Hogg, Kate Storey-Fisher, Weichi Yao, Ben Blum-Smith NeruIPS 2021 paper -
GemNet: Universal Directional Graph Neural Networks for Molecules
Johannes Klicpera, Florian Becker, Stephan Günnemann NeurIPS 2021 paper -
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, Rose Yu NeurIPS 2021 paper -
Geometric and Physical Quantities improve E(3) Equivariant Message Passing
Johannes Brandstetter and Rob Hesselink and Elise van der Pol and Erik J Bekkers and Max Welling ICLR 2022 (spotlight) paper, code -
Frame Averaging for Invariant and Equivariant Network Design
Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J. Smith, Yaron Lipman paper ICLR 2022 - Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai Kornbluth, Boris Kozinsky paper
-
Möbius Convolutions for Spherical CNNs
Thomas W. Mitchel, Noam Aigerman, Vladimir G. Kim, Michael Kazhdan SIGGRAPH 2022 paper
(Note: Equivariance to the action of SL(2, C) on the sphere. To our knowledge this is the first conformally equivariant convolutional surface network) - DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt SIGGRAPH 2022 paper, code Rotation equivariance by using differential operators.
-
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor, Shubhendu Trivedi ICML 2018 paper
Note: convolution is all you need (for scalar fields) -
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco Cohen, Mario Geiger, Maurice Weiler NeurIPS 2019 paper
Note: convolution is all you need (for general fields) -
Equivariance Through Parameter-Sharing
Siamak Ravanbakhsh, Jeff Schneider, Barnabas Poczos ICML 2017 paper -
Universal approximations of invariant maps by neural networks
Dmitry Yarotsky paper -
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
Leon Lang, Maurice Weiler ICLR 2021 paper
Note: steerable kernel spaces are fully understood and parameterized in terms of 1) generalized reduced matrix elements, 2) Clebsch-Gordan coefficients, and 3) harmonic basis functions on homogeneous spaces. -
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym, Haggai Maron ICLR 2021 paper,
Note: universality for TFN and se3-transformer -
Universal Equivariant Multilayer Perceptrons
Siamak Ravanbakhsh paper -
Provably Strict Generalisation Benefit for Equivariant Models
Bryn Elesedy, Sheheryar Zaidi ICML 2021 paper -
Implicit Bias of Linear Equivariant Networks
Hannah Lawrence, Kristian Georgiev, Andrew Dienes, Bobak T. Kiani ICML 2022 paper
- Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
Jonas Köhler, Leon Klein, Frank Noé ICML 2020 paper
Note: general framework for constructing equivariant normalizing flows on euclidean spaces. Instantiation for particle systems/point clouds = simultanoues SE(3) and permutation equivariance. - Equivariant Hamiltonian Flows
Danilo Jimenez Rezende, Sébastien Racanière, Irina Higgins, Peter Toth NeurIPS 2019 ML4Phys workshop paper
Note: general framework for constructing equivariant normalizing flows in phase space utilizing Hamiltonian dynamics. Instantiation for SE(2) equivariance. - Sampling using SU(N) gauge equivariant flows
Denis Boyda, Gurtej Kanwar, Sébastien Racanière, Danilo Jimenez Rezende, Michael S. Albergo, Kyle Cranmer, Daniel C. Hackett, Phiala E. Shanahan paper
Note: normalizing flows for lattice gauge theory. Instantiation for SU(2)/SU(3) equivariance. - Exchangeable neural ode for set modeling
Yang Li, Haidong Yi, Christopher M. Bender, Siyuan Shan, Junier B. Oliva NeurIPS 2020 paper
Note: framework for permutation equivariant flows for set data. Instantiation for permutation equivariance. - Equivariant Normalizing Flows for Point Processes and Sets
Marin Biloš, Stephan Günnemann NeurIPS 2020 paper
Note: framework for permutation equivariant flows for set data. Instantiation for permutation equivariance. - The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom, Victor Garcia Satorras, Jakub M. Tomczak, Max Welling NeurIPS 2020 paper
Note: invertible convolution operators. Instantiation for permutation equivariance. - Targeted free energy estimation via learned mappings
Peter Wirnsberger, Andrew J. Ballard, George Papamakarios, Stuart Abercrombie, Sébastien Racanière, Alexander Pritzel, Danilo Jimenez Rezende, Charles Blundell J Chem Phys. 2020 Oct 14;153(14):144112. paper
Note: normalizing flows for particle systems on a torus. Instantiation for permutation equivariance. - Temperature-steerable flows
Manuel Dibak, Leon Klein, Frank Noé NeurIPS 2020 ML4Phys workshops paper
Note: normalizing flows in phase space with equivariance with respect to changes in temperature.
- Trajectory Prediction using Equivariant Continuous Convolution
Robin Walters, Jinxi Li, Rose Yu ICLR 2021 paper - SE(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon Batzner, Tess E. Smidt, Lixin Sun, Jonathan P. Mailoa, Mordechai Kornbluth, Nicola Molinari, Boris Kozinsky paper - Finding Symmetry Breaking Order Parameters with Euclidean Neural Networks
Tess E. Smidt, Mario Geiger, Benjamin Kurt Miller paper - Group Equivariant Generative Adversarial Networks
Neel Dey, Antong Chen, Soheil Ghafurian ICLR 2021 paper - Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks
David Pfau, James S. Spencer, Alexander G. de G. Matthews, W. M. C. Foulkes paper - Symmetry-Aware Actor-Critic for 3D Molecular Design
Gregor N. C. Simm, Robert Pinsler, Gábor Csányi, José Miguel Hernández-Lobato ICLR 2021 paper - Roto-translation equivariant convolutional networks: Application to histopathology image analysis
Maxime W. Lafarge, Erik J. Bekkers, Josien P.W. Pluim, Remco Duits, Mitko Veta MedIA paper - Scale Equivariance Improves Siamese Tracking
Ivan Sosnovik*, Artem Moskalev*, Arnold Smeulders WACV 2021 paper - 3D G-CNNs for Pulmonary Nodule Detection Marysia Winkels, Taco S. Cohen paper International Conference on Medical Imaging with Deep Learning (MIDL), 2018.
- Roto-translation covariant convolutional networks for medical image analysis
Erik J. Bekkers, Maxime W. Lafarge, Mitko Veta, Koen A.J. Eppenhof, Josien P.W. Pluim, Remco Duits MICCAI 2018 Young Scientist Award paper - Equivariant Spherical Deconvolution: Learning Sparse Orientation Distribution Functions from Spherical Data
Axel Elaldi*, Neel Dey*, Heejong Kim, Guido Gerig, Information Processing in Medical Imaging (IPMI) 2021 paper - Rotation-Equivariant Deep Learning for Diffusion MRI
Philip Müller, Vladimir Golkov, Valentina Tomassini, Daniel Cremers paper - Equivariant geometric learning for digital rock physics: estimating formation factor and effective permeability tensors from Morse graph
Chen Cai, Nikolaos Vlassis, Lucas Magee, Ran Ma, Zeyu Xiong, Bahador Bahmani, Teng-Fong Wong, Yusu Wang, WaiChing Sun paper
Note: equivariant nets + Morse graph for permeability tensor prediction - Direct prediction of phonon density of states with Euclidean neural network Zhantao Chen, Nina Andrejevic, Tess Smidt, Zhiwei Ding, Yen-Ting Chi, Quynh T. Nguyen, Ahmet Alatas, Jing Kong, Mingda Li, Advanced Science (2021) paper arXiv
- SE(3)-equivariant prediction of molecular wavefunctions and electronic densities Oliver T. Unke, Mihail Bogojeski, Michael Gastegger, Mario Geiger, Tess Smidt, Klaus-Robert Müller paper
- Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian, Regina Barzilay, Tommi Jaakkola, Andreas Krause, under review, 2022 paper
- Roto-translated Local Coordinate Frames For Interacting Dynamical Systems Miltiadis Kofinas, Naveen Shankar Nagaraja, Efstratios Gavves NeurIPS 2021 paper
- MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia, Dávid Péter Kovács, Gregor N. C. Simm, Christoph Ortner, Gábor Csányi, under review, 2022 paper, code
https://www.mitchel.computer/doc/thesis.pdf There are many paper on this topics. I only added very few of them.
- PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas CVPR 2017 paper - Deep Sets
Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, Alexander Smola NeurIPS 2017 paper - Invariant and Equivariant Graph Networks
Haggai Maron, Heli Ben-Hamu, Nadav Shamir, Yaron Lipman ICLR 2019 paper - Provably Powerful Graph Networks
Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, Yaron Lipman NeurIPS 2019 paper - Universal Invariant and Equivariant Graph Neural Networks
Nicolas Keriven, Gabriel Peyré NeurIPS 2019 paper - On Learning Sets of Symmetric Elements
Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya ICML 2020 best paper - On the Universality of Invariant Networks
Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman paper - Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs Jinwoo Kim, Saeyoon Oh, Seunghoon Hong paper
IAS: Graph Nets: The Next Generation - Max Welling - YouTube
Equivariance and Data Augmentation workshop: many nice talks
IPAM: E(3) Equivariant Neural Network Tutorial
IPAM: Risi Kondor: "Fourier space neural networks"
NeurIPS 2020 tutorial: Equivariant Networks
Yaron Lipman - Deep Learning of Irregular and Geometric Data - YouTube
Math-ML: Erik J Bekkers: Group Equivariant CNNs beyond Roto-Translations: B-Spline CNNs on Lie Groups
Kostas Daniilidis: Geometry-aware deep learning: A brief history of equivariant representations and recent results
Andrew White: Deep Learning for Molecules and Materials.
Erik Bekkers: An Introduction to Group Equivariant Deep Learning A course offered at UvA
Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković: Geometric Deep Learning Course
I am by no means an expert in this field. Here are books and articles suggest by Taco Cohen when asked references to learn group theory and representation theory.
-
Carter, Visual Group Theory
Note: very basic intro to group theory -
Theoretical Aspects of Group Equivariant Neural Networks
Carlos Esteves
Note: covers all the math you need for equivariant nets in a fairly compact and accessible manner. -
Serre, Linear Representations of Finite Groups
Note: classic text on representations of finite groups. First few chapters are relevant to equivariant nets. -
G B Folland. A Course in Abstract Harmonic Analysis
Note: covers representations of locally compact groups; induced representations. -
Mark Hamilton. Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics
Note: covers fiber bundles, useful for understanding homogeneous G-CNNs and Gauge CNNs.
-
Taco Cohen, Equivariant Convolutional Networks, PhD Thesis, University of Amsterdam, 2021 [pdf] (Note: Part II contains a lot of new material, not published before)
-
Extending Convolution Through Spatially Adaptive Alignment
Thomas W. Mitchel, PhD Thesis, Johns Hopkins University, 2022 pdf
Presents a novel, unified theoretical framework for transformation-equivariant convolutions on arbitrary homogenous spaces and 2D Riemannian manifolds. Can handle high-dimensional, non-compact transformation groups.
There are many paper I haven't read carefully yet.
- Making Convolutional Networks Shift-Invariant Again
Richard Zhang ICML 2019 paper - Probabilistic symmetries and invariant neural networks
Benjamin Bloem-Reddy, Yee Whye Teh JMLR paper - On Representing (Anti)Symmetric Functions
Marcus Hutter paper - PDE-based Group Equivariant Convolutional Neural Networks
Bart M.N. Smets, Jim Portegies, Erik J. Bekkers, Remco Duits paper