depth_from_video_in_the_wild_eval_2020Winter

Data Preparation (KITTI)

  • GenDataKITTI_gray.py requires MaskRCNN in the same dir.
nohup python GenDataKITTI_gray.py \
--HEIGHT 128 \
--WIDTH 256 \
--OUTPUT_DIR /home/ubuntu/data/kitti_result_all_20201228 \
--TEMP_DIR /home/ubuntu/data/train_data_example_all_20201228/ &

Train example (KITTI)

nohup python -m depth_from_video_in_the_wild.train \
--img_height 128 \
--img_width 256 \
--data_dir /home/ubuntu/data/kitti_result_all_20201228 \
--checkpoint_dir=/home/ubuntu/data/kitti_experiment_checkpoint_20201228 \
--imagenet_ckpt=/home/ubuntu/data/ResNet18/model.ckpt \
--train_steps=1000000 &

Inference Example (KITTI)

python inference_dfv.py \
    --img_height 128 \
    --img_width 256 \
    --logtostderr \
    --file_extension png \
    --depth \
    --egomotion false \
    --input_list_file /home/ubuntu/data/raw_data_KITTI/test_files_eigen_gray.txt \
    --output_dir /home/ubuntu/data/result_20201228_143940/ \
    --model_ckpt /home/ubuntu/data/kitti_experiment_checkpoint_20201228/model-143940

Getting Abs Rel Error (KITTI)

python kitti_eval/eval_depth.py --kitti_dir=/home/ubuntu/data/raw_data_KITTI/ --pred_file=/home/ubuntu/data/result_20201228_143940/result.npy
  • abs_rel, sq_rel, rms, log_rms, d1_all, a1, a2, a3, scalor
  • 0.1253, 1.0206, 5.6762, 0.2004, 0.0000, 0.8414, 0.9482, 0.9808 , 16.1354

Finetuning with the video taken in Saitama

1. Use StereoAVIToPNG.py

nohup python StereoAVIToPNG.py \
--path_avi /home/ubuntu/data/StereoVideo/V2-mv-20200716103312-ulrg.avi \
--path_output_png /home/ubuntu/data/Sayama/all_video/video1top_png/ \
--option top \
--fps 10 &

2 Use CropPNG.py

nohup python CropPNG.py --base_path /home/ubuntu/data/Sayama/all_video/ \
--WIDTH 256 \
--HEIGHT 128 \
--OUTPUT_DIR /home/ubuntu/data/Sayama/out_128_256 \
--TEMP_DIR /home/ubuntu/data/Sayama/tmpdir_128_256 &

3 Use MakeMask.py

  • "all video_training" dir should include only "video2top_png" dir.
    • Make training mask for images only in "video2top_png" dir.
nohup python MakeMask.py --base_path /home/ubuntu/data/Sayama/all_video_training/ \
--ROOT_DIR ../Mask_RCNN \
--WIDTH 256 \
--HEIGHT 128 \
--OUTPUT_DIR /home/ubuntu/data/Sayama/training_data_128_256 \
--TEMP_DIR /home/ubuntu/data/Sayama/tmpdir_training_128_256 &

4. Training

nohup python -m depth_from_video_in_the_wild.train \
--img_height 128 \
--img_width 256 \
--data_dir /home/ubuntu/data/Sayama/training_data_128_256 \
--checkpoint_dir=/home/ubuntu/data/kitti_experiment_checkpoint_20201228 \
--imagenet_ckpt=/home/ubuntu/data/ResNet18/model.ckpt \
--train_steps=1000000 &

Evaluation

Before fine tuning

Getting Predicted Depth

python inference_dfv.py \
    --img_height 128 \
    --img_width 256 \
    --logtostderr \
    --file_extension png \
    --depth \
    --egomotion false \
    --input_dir /home/ubuntu/data/Sayama/tmpdir_128_256/2020_08_04/video1top_png/image_02/data/ \
    --output_dir /home/ubuntu/Sayama/result_video1top_143940_128_256/ \
    --model_ckpt /home/ubuntu/data/kitti_experiment_checkpoint_20201228/model-143940

Getting Abs Rel Error

python AbsRelError.py \
--save_path /home/ubuntu/data/Sayama/tmpdir_128_256/2020_08_04/video1top_png/image_02/data/ \
--depth_map_dir /home/ubuntu/Sayama/result_video1top_143940_128_256/ \
--ans_int_disp_map_dir /home/ubuntu/data/Sayama/tmpdir_128_256/2020_08_04/video1middle_png/image_02/data
  • abs_rel, sq_rel, rms, log_rms, d1_all, a1, a2, a3, scalor
  • 0.2853, 3.5981, 9.5108, 0.3669, 0.0000, 0.5333, 0.8103, 0.9268 , 12.7202

After fine tuning

Getting Predicted Depth

python inference_dfv.py \
    --img_height 128 \
    --img_width 256 \
    --logtostderr \
    --file_extension png \
    --depth \
    --egomotion false \
    --input_dir /home/ubuntu/data/Sayama/tmpdir_128_256/2020_08_04/video1top_png/image_02/data/ \
    --output_dir /home/ubuntu/Sayama/result_video1top_150558_128_256/ \
    --model_ckpt /home/ubuntu/data/kitti_experiment_checkpoint_20201228/model-150558

Getting Abs Rel Error

python AbsRelError.py \
--save_path /home/ubuntu/data/Sayama/tmpdir_128_256/2020_08_04/video1top_png/image_02/data/ \
--depth_map_dir /home/ubuntu/Sayama/result_video1top_150558_128_256/ \
--ans_int_disp_map_dir /home/ubuntu/data/Sayama/tmpdir_128_256/2020_08_04/video1middle_png/image_02/data
  • abs_rel, sq_rel, rms, log_rms, d1_all, a1, a2, a3, scalor
  • 0.2465, 3.6083, 9.2301, 0.3344, 0.0000, 0.6564, 0.8658, 0.9395 , 14.5235

Getting Abs Rel Error (With no scale matching)

python AbsRelError_NoScaleMatching.py \
--save_path /home/ubuntu/data/Sayama/tmpdir_128_256/2020_08_04/video1top_png/image_02/data/ \
--depth_map_dir /home/ubuntu/Sayama/result_video1top_150558_128_256/ \
--ans_int_disp_map_dir /home/ubuntu/data/Sayama/tmpdir_128_256/2020_08_04/video1middle_png/image_02/data
  • abs_rel, sq_rel, rms, log_rms, d1_all, a1, a2, a3, scalor
  • 0.6569, 14.5743, 22.5303, 1.4669, 0.0000, 0.0662, 0.1630, 0.2452 , 1.0000

Getting Abs Rel Error (Scale Matching with acceleration sensor)

python AbsRelError_NoScaleMatching.py \
--save_path /home/ubuntu/data/Sayama/tmpdir_128_256/2020_08_04/video1top_png/image_02/data/ \
--depth_map_dir /home/ubuntu/Sayama/result_video1top_150558_128_256/ \
--ans_int_disp_map_dir /home/ubuntu/data/Sayama/tmpdir_128_256/2020_08_04/video1middle_png/image_02/data
  • abs_rel, sq_rel, rms, log_rms, d1_all, a1, a2, a3, scalor
  • 0.3831, 6.7716, 11.9421, 0.4545, 0.0000, 0.4083, 0.6868, 0.8542 , 13.7007

Visualization

python Visualization.py