Tarantool API bindings for Rust. This library contains the following Tarantool API's:
- Box: spaces, indexes, sequences
- Fibers: fiber attributes, conditional variables, latches
- CoIO
- Transactions
- Schema management
- Protocol implementation (
net.box
): CRUD, stored procedure call, triggers - Tuple utils
- Logging (see https://docs.rs/log/)
- Error handling
Links:
See also:
Caution! The library is currently under development. API may be unstable until version 1.0 will be released.
These instructions will get a copy of the project up and running on your local machine. For deployment, check out the deployment notes at the end of the tutorial.
- rustc 1.48 or newer
- tarantool 2.2
On MacOS you may encounter linking errors like this: ld: symbol(s) not found for architecture x86_64
. To solve it please put this to your $CARGO_HOME/config.toml
(~/.cargo/config.toml
by default):
[target.x86_64-apple-darwin]
rustflags = [
"-C", "link-arg=-undefined", "-C", "link-arg=dynamic_lookup"
]
Add the following lines to your project Cargo.toml:
[dependencies]
tarantool = "0.5"
[lib]
crate-type = ["cdylib"]
See https://github.com/picodata/brod for example usage.
net_box
- Enables protocol implementation (enabled by default)schema
- Enables schema manipulation utils (WIP for now)
Tarantool can call Rust code via a plugin, from Lua using FFI, or as a stored procedure. This tutorial only is about the third option, Rust stored procedures. In fact Rust routines are always "C functions" to Tarantool but the phrase "stored procedure" is commonly used for historical reasons.
This tutorial contains the following simple steps:
examples/easy
- prints "hello world";examples/harder
- decodes a passed parameter value;examples/hardest
- uses this library to do a DBMS insert;examples/read
- uses this library to do a DBMS select;examples/write
- uses this library to do a DBMS replace.
By following the instructions and seeing that the results users should become confident in writing their own stored procedures.
Check that these items exist on the computer:
- Tarantool 2.2
- A rustc compiler + cargo builder. Any modern version should work
- Create cargo project:
$ cargo init --lib
- Add the following lines to
Cargo.toml
:
[package]
name = "easy"
version = "0.1.0"
edition = "2018"
# author, license, etc
[dependencies]
tarantool = "0.5.0"
serde = "1.0"
[lib]
crate-type = ["cdylib"]
- Create the server entypoint named
init.lua
with the following script:
require('easy')
box.cfg({listen = 3301})
box.schema.func.create('easy', {language = 'C', if_not_exists = true})
box.schema.func.create('easy.easy2', {language = 'C', if_not_exists = true})
box.schema.user.grant('guest', 'execute', 'function', 'easy', {if_not_exists = true})
box.schema.user.grant('guest', 'execute', 'function', 'easy.easy2', {if_not_exists = true})
If these commands appear unfamiliar, look at the Tarantool documentation:
- Edit
lib.rs
file and add the following lines:
use std::os::raw::c_int;
use tarantool::tuple::{FunctionArgs, FunctionCtx};
#[no_mangle]
pub extern "C" fn easy(_: FunctionCtx, _: FunctionArgs) -> c_int {
println!("hello world");
0
}
#[no_mangle]
pub extern "C" fn easy2(_: FunctionCtx, _: FunctionArgs) -> c_int {
println!("hello world -- easy2");
0
}
#[no_mangle]
pub extern "C" fn luaopen_easy(_l: std::ffi::c_void) -> c_int {
// Tarantool calls this function upon require("easy")
println!("easy module loaded");
0
}
Compile the program and start the server:
$ cargo build
$ LUA_CPATH=target/debug/lib?.so tarantool init.lua
The LUA_CPATH is necessary because Rust layout conventions slightly differs from those in Lua. Fortunately, Lua is rater flexible.
Now you're ready to make some requests. Open separate console window and run tarantool, we'll use it as a client. In the tarantool console paste the following:
conn = require('net.box').connect(3301)
conn:call('easy')
Again, check out net.box module documentation, if necessary.
The code above connects to the server and calls the 'easy' function. Since the easy()
function in
lib.rs
begins with println!("hello world")
, the words "hello world" will appear in the server console.
Also, it checks that the call was successful. Since the easy()
function in lib.rs
ends
with return 0, there is no error message to display and the request is over.
Now let's call the other function in lib.rs - easy2()
. This is almost the same as the easy()
function, but there's a detail: when the file name is not the same as the function name, then we
have to specify {file-name}.{function-name}.
conn:call('easy.easy2')
... and this time the result will be hello world -- easy2
.
Conclusion: calling a Rust function is easy.
Create a new crate "harder". Put these lines to lib.rs
:
use serde::{Deserialize, Serialize};
use std::os::raw::c_int;
use tarantool_module::tuple::{AsTuple, FunctionArgs, FunctionCtx, Tuple};
#[derive(Serialize, Deserialize)]
struct Args {
pub fields: Vec<i32>,
}
impl AsTuple for Args {}
#[no_mangle]
pub extern "C" fn harder(_: FunctionCtx, args: FunctionArgs) -> c_int {
let args: Tuple = args.into(); // (1)
let args = args.into_struct::<Args>().unwrap(); // (2)
println!("field_count = {}", args.fields.len());
for val in args.fields {
println!("val={}", val);
}
0
}
- extract tuple from special structure
FunctionArgs
- deserialize tuple into rust structure
Compile the program, producing a library file named harder.so
.
Now go back to the client and execute these requests:
box.schema.func.create('harder', {language = 'C'})
box.schema.user.grant('guest', 'execute', 'function', 'harder')
passable_table = {}
table.insert(passable_table, 1)
table.insert(passable_table, 2)
table.insert(passable_table, 3)
capi_connection:call('harder', passable_table)
This time the call is passing a Lua table (passable_table
) to the harder()
function. The harder()
function will see
it, it's in the char args
parameter.
And now the screen looks like this:
tarantool> capi_connection:call('harder', passable_table)
field_count = 3
val=1
val=2
val=3
---
- []
...
Conclusion: decoding parameter values passed to a rust function is not easy at first, but there are routines to do the job.
Create a new crate "hardest". Put these lines to lib.rs
:
use std::os::raw::c_int;
use serde::{Deserialize, Serialize};
use tarantool_module::space::Space;
use tarantool_module::tuple::{AsTuple, FunctionArgs, FunctionCtx};
#[derive(Serialize, Deserialize)]
struct Row {
pub int_field: i32,
pub str_field: String,
}
impl AsTuple for Row {}
#[no_mangle]
pub extern "C" fn hardest(ctx: FunctionCtx, _: FunctionArgs) -> c_int {
let mut space = Space::find("capi_test").unwrap(); // (1)
let result = space.insert( // (3)
&Row { // (2)
int_field: 10000,
str_field: "String 2".to_string(),
}
);
ctx.return_tuple(result.unwrap().unwrap()).unwrap()
}
This time the rust function is doing three things:
- finding the
capi_test
space by callingSpace::find_by_name()
method; - row structure can be passed as is, it will be serialized to tuple automaticaly;
- inserting a tuple using
.insert()
.
Compile the program, producing a library file named hardest.so
.
Now go back to the client and execute these requests:
box.schema.func.create('hardest', {language = "C"})
box.schema.user.grant('guest', 'execute', 'function', 'hardest')
box.schema.user.grant('guest', 'read,write', 'space', 'capi_test')
capi_connection:call('hardest')
Now, still on the client, execute this request:
box.space.capi_test:select()
The result should look like this:
tarantool> box.space.capi_test:select()
---
- - [10000, 'String 2']
...
This proves that the hardest()
function succeeded.
Create a new crate "read". Put these lines to lib.rs
:
use std::os::raw::c_int;
use serde::{Deserialize, Serialize};
use tarantool_module::space::Space;
use tarantool_module::tuple::{AsTuple, FunctionArgs, FunctionCtx};
#[derive(Serialize, Deserialize, Debug)]
struct Row {
pub int_field: i32,
pub str_field: String,
}
impl AsTuple for Row {}
#[no_mangle]
pub extern "C" fn read(_: FunctionCtx, _: FunctionArgs) -> c_int {
let space = Space::find("capi_test").unwrap(); // (1)
let key = 10000;
let result = space.get(&(key,)).unwrap(); // (2, 3)
assert!(result.is_some());
let result = result.unwrap().into_struct::<Row>().unwrap(); // (4)
println!("value={:?}", result);
0
}
- once again, finding the
capi_test
space by callingSpace::find()
; - formatting a search key = 10000 using rust tuple literal (an alternative to serializing structures);
- getting a tuple using
.get()
; - deserializing result.
Compile the program, producing a library file named read.so
.
Now go back to the client and execute these requests:
box.schema.func.create('read', {language = "C"})
box.schema.user.grant('guest', 'execute', 'function', 'read')
box.schema.user.grant('guest', 'read,write', 'space', 'capi_test')
capi_connection:call('read')
The result of capi_connection:call('read')
should look like this:
tarantool> capi_connection:call('read')
uint value=10000.
string value=String 2.
---
- []
...
This proves that the read()
function succeeded.
Create a new crate "write". Put these lines to lib.rs
:
use std::os::raw::c_int;
use tarantool_module::error::{set_error, Error, TarantoolErrorCode};
use tarantool_module::fiber::sleep;
use tarantool_module::space::Space;
use tarantool_module::transaction::start_transaction;
use tarantool_module::tuple::{FunctionArgs, FunctionCtx};
#[no_mangle]
pub extern "C" fn hardest(ctx: FunctionCtx, _: FunctionArgs) -> c_int {
let mut space = match Space::find("capi_test").unwrap() { // (1)
None => {
return set_error(
file!(),
line!(),
&TarantoolErrorCode::ProcC,
"Can't find space capi_test",
)
}
Some(space) => space,
};
let row = (1, 22); // (2)
start_transaction(|| -> Result<(), Error> { // (3)
space.replace(&row, false)?; // (4)
Ok(()) // (5)
})
.unwrap();
sleep(0.001);
ctx.return_mp(&row).unwrap() // (6)
}
- once again, finding the
capi_test
space by callingSpace::find_by_name()
; - preparing row value;
- starting a transaction;
- replacing a tuple in
box.space.capi_test
- ending a transaction:
- commit if closure returns
Ok()
- rollback on
Error()
;
- commit if closure returns
- use the
.return_mp()
method to return the entire tuple to the caller and let the caller display it.
Compile the program, producing a library file named write.so
.
Now go back to the client and execute these requests:
box.schema.func.create('write', {language = "C"})
box.schema.user.grant('guest', 'execute', 'function', 'write')
box.schema.user.grant('guest', 'read,write', 'space', 'capi_test')
capi_connection:call('write')
The result of capi_connection:call('write')
should look like this:
tarantool> capi_connection:call('write')
---
- [[1, 22]]
...
This proves that the write()
function succeeded.
Conclusion: Rust "stored procedures" have full access to the database.
- Get rid of each of the function tuples with
box.schema.func.drop
. - Get rid of the
capi_test
space withbox.schema.capi_test:drop()
. - Remove the
*.so
files that were created for this tutorial.
To invoke the automated tests run:
make
make test
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Please make sure to update tests as appropriate.
We use SemVer for versioning. For the versions available, see the tags on this repository.
- Anton Melnikov
- Dmitriy Koltsov
- Georgy Moshkin
© 2020-2021 Picodata.io https://github.com/picodata
This project is licensed under the BSD License - see the LICENSE file for details