This repository includes the source code of the melody extraction algorithm from:
Wei-Tsung Lu and Li Su, “Vocal melody extraction with semantic segmentation and audio-symbolic domain transfer learning,” International Society of Music Information Retrieval Conference (ISMIR), September 2018.
This repository requires following packages:
- python 3.6
- numpy
- tensorflow
- keras
- mido
usage: VocalMelodyExtraction.py [-h][-p phase]
[-t model_type][-d data_type][-da dataset_path][-la label_path]
[-ms model_path_symbolic][-w window_width][-b batch_size_train][-e epoch]
[-n steps][-o output_model_name]
[-m model_path] [-i input_file][-bb batch_size_train]
required arguments:
-da dataset_path path to data set
-la label_path path to dataset label
-ms model_path_symbolic path to symbolic model
optional arguments:
-h
-p phase phase: training or testing (default: "testing)
-t model_type model type: seg or pnn (default: "seg")
-d data_type data type: audio or symbolic (default: "audio")
-w window_width width of the input feature (default: 128)
-b batch_size_train batch size during training (default: 12)
-e epoch number of epoch (default: 5)
-n steps number of step per epoch (default: 6000)
-o output_model_name name of the output model (default: "out")
-m model_path path to existing model (default: "Seg")
-i input_file path to input file (default: "train01.wav")
-bb batch_size_train batch size during testing (default: 10)
Click here to download the pretrained models.
- Add codes for symbolic model training
- Data set handling
MIT