/csuite

Primary LanguagePythonApache License 2.0Apache-2.0

Continuing Environments for Reinforcement Learning (csuite)

CSuite is a collection of carefully-curated synthetic environments for research in the continuing setting: the agent-environment interaction goes on forever without limit, with no natural episode boundaries.

Installation

Clone the source code into a local directory and install using pip:

git clone https://github.com/deepmind/csuite.git /path/to/local/csuite/
pip install /path/to/local/csuite/

csuite is not yet available from PyPI.

Environment Interface

CSuite environments adhere to the Python interface defined in csuite/environment/base.py. Find the interface documentation here.

import csuite

env = csuite.load("catch")
action_spec = env.action_spec()
observation = env.start()
print("First observation:\n", observation)

total_reward = 0
for _ in range(100):
  observation, reward = env.step(action_spec.generate_value())
  total_reward += reward

print("Total reward:", total_reward)

Using csuite with dm_env interface

For a codebase that uses the dm_env interface, use the DMEnvFromCSuite wrapper class:

import csuite

env = csuite.dm_env_wrapper.DMEnvFromCSuite(csuite.load("catch"))
action_spec = env.action_spec()

timestep = env.reset()
print("First observation:\n", timestep.observation)

total_reward = 0
for _ in range(100):
  timestep = env.step(action_spec.generate_value())
  total_reward += timestep.reward

print("Total reward:", total_reward)