grandyang/leetcode

[LeetCode] 215. Kth Largest Element in an Array

grandyang opened this issue · 4 comments

 

Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.

Example 1:

Input: [3,2,1,5,6,4] and k = 2
Output: 5

Example 2:

Input: [3,2,3,1,2,4,5,5,6] and k = 4
Output: 4

Note: 
You may assume k is always valid, 1 ≤ k ≤ array's length.

 

这道题让我们求数组中第k大的数字,怎么求呢,当然首先想到的是给数组排序,然后求可以得到第k大的数字。先看一种利用 C++ 的 STL 中的集成的排序方法,不用我们自己实现,这样的话这道题只要两行就完事了,代码如下:

 

解法一:

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        sort(nums.begin(), nums.end());
        return nums[nums.size() - k];
    }
};

 

下面这种解法是利用了 priority_queue 的自动排序的特性,跟上面的解法思路上没有什么区别,当然我们也可以换成 multiset 来做,一个道理,参见代码如下:

 

解法二:

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        priority_queue<int> q(nums.begin(), nums.end());
        for (int i = 0; i < k - 1; ++i) {
            q.pop();
        }
        return q.top();
    }
};

 

上面两种方法虽然简洁,但是确不是本题真正想考察的东西,可以说有一定的偷懒嫌疑。这道题最好的解法应该是下面这种做法,用到了快速排序 Quick Sort 的**,这里排序的方向是从大往小排。对快排不熟悉的童鞋们随意上网搜些帖子看下吧,多如牛毛啊,总有一款适合你。核心**是每次都要先找一个中枢点 Pivot,然后遍历其他所有的数字,像这道题从大往小排的话,就把大于中枢点的数字放到左半边,把小于中枢点的放在右半边,这样中枢点是整个数组中第几大的数字就确定了,虽然左右两部分各自不一定是完全有序的,但是并不影响本题要求的结果,因为左半部分的所有值都大于右半部分的任意值,所以我们求出中枢点的位置,如果正好是 k-1,那么直接返回该位置上的数字;如果大于 k-1,说明要求的数字在左半部分,更新右边界,再求新的中枢点位置;反之则更新右半部分,求中枢点的位置;不得不说,这个思路真的是巧妙啊~

 

解法三:

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        int left = 0, right = nums.size() - 1;
        while (true) {
            int pos = partition(nums, left, right);
            if (pos == k - 1) return nums[pos];
            if (pos > k - 1) right = pos - 1;
            else left = pos + 1;
        }
    }
    int partition(vector<int>& nums, int left, int right) {
        int pivot = nums[left], l = left + 1, r = right;
        while (l <= r) {
            if (nums[l] < pivot && nums[r] > pivot) {
                swap(nums[l++], nums[r--]);
            }
            if (nums[l] >= pivot) ++l;
            if (nums[r] <= pivot) --r;
        }
        swap(nums[left], nums[r]);
        return r;
    }
};

 

Github 同步地址:

#215

 

类似题目:

Wiggle Sort II

Top K Frequent Elements

Third Maximum Number

Kth Largest Element in a Stream

K Closest Points to Origin

 

参考资料:

https://leetcode.com/problems/kth-largest-element-in-an-array/

https://leetcode.com/problems/kth-largest-element-in-an-array/discuss/60294/Solution-explained

https://leetcode.com/problems/kth-largest-element-in-an-array/discuss/60309/C%2B%2B-PartitionMax-Heappriority_queuemultiset

 

LeetCode All in One 题目讲解汇总(持续更新中...)

同样是利用pivot来实现kth 最大值问题,感觉比解法三稍微简单一些

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
      k = nums.size() - k; // kth largest is located at size-k!
      int first = 0, last = nums.size()-1;    
      while(first < last){
        int pivot = partition(nums, first, last);
        if(pivot < k){
          first = pivot+1;
        }else if(pivot>k){
          last = pivot-1;
        }else{
          break;
        }
      }
      return nums[k];
    }
    int partition(vector<int>& nums, int first, int last){
      int left = first+1, right = last;
      //a check is still needed when left==right since this number needs to be compared with the pivot value
      while(left<=right){
        if(nums[left]<nums[first])
          ++left;
        else if(nums[right] >= nums[first]) 
          --right;
        else if(left < right) 
          swap(nums[left], nums[right]);
      }
      //left is finally at an index of greater than first, and right is at the position of 
      //less than first, so we need to swap first and right, a special case is that 
      //if all numbers are greater than first except itself, than right = first, actually no swap
      swap(nums[first], nums[right]);
      return right;
    }
};

您好,我发现这一部分

while (l <= r) {
        if (nums[l] < pivot && nums[r] > pivot) {
            swap(nums[l++], nums[r--]);
        }
        if (nums[l] >= pivot) ++l;
        if (nums[r] <= pivot) --r;
    }

并不能写成

while (l <= r) {
        if (nums[l] >= pivot) ++l;
        if (nums[r] <= pivot) --r;
        if (nums[l] < pivot && nums[r] > pivot) {
            swap(nums[l++], nums[r--]);
        }
    }

否则input: [3,2,1,5,6,4] 2得到4, 但是实际上应该得到5;不过我实在不明白是为什么啊... 我一步步自己推演了也觉得这两种写法应该得到相同的结果,请问您知不知道为什么?

Hi,大神你好,一直看你的题解收获特别大,非常感谢!
这道题我发现如果每次都pivot选最左边都话会导致速度很慢,有可能是test cases里面搞成worst case了。加上random会好很多。

class Solution {
public:
    int partition(vector<int> & nums, int left, int right){
        int random_pivot = rand()%(right - left+1) + left;
        swap(nums[left], nums[random_pivot]);
        int pivot = nums[left];
        int l = left+1;
        int r = right;
        while(l<=r){
            if (nums[l]<pivot&&nums[r]>pivot){
                swap(nums[l++], nums[r--]);
            }else if (nums[l]>=pivot){
                ++l;
            }else if (nums[r]<=pivot){
                --r;
            }
        }
        swap (nums[left], nums[r]);
        return r;
    }
    int findKthLargest(vector<int>& nums, int k) {
        int left = 0;
        int right = nums.size()-1;
        while(true){
            int pos = partition(nums, left, right);
            if (pos<k-1){
                left = pos+1;
            }else if (pos>k-1){
                right = pos-1;
            }else{
                return nums[pos];
            }            
        }
    }
}; 

您好,我发现这一部分

while (l <= r) {
        if (nums[l] < pivot && nums[r] > pivot) {
            swap(nums[l++], nums[r--]);
        }
        if (nums[l] >= pivot) ++l;
        if (nums[r] <= pivot) --r;
    }

并不能写成

while (l <= r) {
        if (nums[l] >= pivot) ++l;
        if (nums[r] <= pivot) --r;
        if (nums[l] < pivot && nums[r] > pivot) {
            swap(nums[l++], nums[r--]);
        }
    }

否则input: [3,2,1,5,6,4] 2得到4, 但是实际上应该得到5;不过我实在不明白是为什么啊... 我一步步自己推演了也觉得这两种写法应该得到相同的结果,请问您知不知道为什么?

不一样的执行顺序,把 l++, r-- 单独写成一行就很明显了