Implementation of Squeeze and Excitation Networks in Keras 2.0.3+.
Current models supported :
- SE-ResNet. Custom ResNets can be built using the
SEResNet
model builder, whereas prebuilt Resnet models such asSEResNet50
,SEResNet101
andSEResNet154
can also be built directly. - SE-InceptionV3
- SE-Inception-ResNet-v2
- SE-ResNeXt
Additional models (not from the paper, not verified if they improve performance)
- SE-MobileNets
- SE-DenseNet - Custom SE-DenseNets can be built using
SEDenseNet
model builder, whereas prebuilt SEDenseNet models such asSEDenseNetImageNet121
,SEDenseNetImageNet169
,SEDenseNetImageNet161
,SEDenseNetImageNet201
andSEDenseNetImageNet264
can be build DenseNet in ImageNet configuration. To use SEDenseNet in CIFAR mode, use theSEDenseNet
model builder.
The block is simple to implement in Keras. It composes of a GlobalAveragePooling2D, 2 Dense blocks and an elementwise multiplication.
Shape inference can be done automatically in Keras. It can be imported from se.py
.
def squeeze_excite_block(input, ratio=16):
init = input
channel_axis = 1 if K.image_data_format() == "channels_first" else -1
filters = init._keras_shape[channel_axis]
se_shape = (1, 1, filters)
se = GlobalAveragePooling2D()(init)
se = Reshape(se_shape)(se)
se = Dense(filters // ratio, activation='relu', kernel_initializer='he_normal', use_bias=False)(se)
se = Dense(filters, activation='sigmoid', kernel_initializer='he_normal', use_bias=False)(se)
if K.image_data_format() == 'channels_first':
se = Permute((3, 1, 2))(se)
x = multiply([init, se])
return x