This package provides a python implementation of the Chi-Squared Automatic Inference Detection (CHAID) decision tree
CHAID is distributed via pypi and can be installed like:
pip install CHAID
Alternatively, you can clone the repository and install via
pip install -e path/to/your/checkout
from CHAID import Tree
## create the data
ndarr = np.array(([1, 2, 3] * 5) + ([2, 2, 3] * 5)).reshape(10, 3)
df = pd.DataFrame(ndarr)
df.columns = ['a', 'b', 'c']
arr = np.array(([1] * 5) + ([2] * 5))
df['d'] = arr
>>> df
a b c d
0 1 2 3 1
1 1 2 3 1
2 1 2 3 1
3 1 2 3 1
4 1 2 3 1
5 2 2 3 2
6 2 2 3 2
7 2 2 3 2
8 2 2 3 2
9 2 2 3 2
## set the CHAID input parameters
independent_variable_columns = ['a', 'b', 'c']
dep_variable = 'd'
## create the Tree via pandas
tree = Tree.from_pandas_df(df, independent_variable_columns, dep_variable)
## create the same tree, but without pandas helper
tree = Tree(ndarr, arr, split_titles=['a', 'b', 'c'])
>>> tree.print_tree()
([], {1: 5, 2: 5}, ('a', p=0.001565402258, score=10.0, groups=[[1], [2]]), dof=1))
├── ([1], {1: 5, 2: 0}, <Invalid Chaid Split>)
└── ([2], {1: 0, 2: 5}, <Invalid Chaid Split>)
## to get a LibTree object,
>>> tree.to_tree()
<treelib.tree.Tree object at 0x114e2e350>
## the different nodes of the tree can be accessed like
first_node = tree.tree_store[0]
>>> first_node
([], {1: 5, 2: 5}, ('a', p=0.001565402258, score=10.0, groups=[[1], [2]]), dof=1))
## the properties of the node can be access like
>>> first_node.members
{1: 5, 2: 5}
## the properties of split can be accessed like
>>> first_node.split.p
0.001565402258002549
>>> first_node.split.score
10.0
When the dependent variable is continuous, the chi-squared test does not work due to very low frequencies of values across subgroups. As a consequence, and because the F-test is very susceptible to deviations from normality, the normality of the dependent set is determined and Bartlett's test for significance is used when the data is normally distributed (although the subgroups may not necessarily be so) or Levene's test is used when the data is non-normal.
from CHAID import Tree
## create the data
ndarr = np.array(([1, 2, 3] * 5) + ([2, 2, 3] * 5)).reshape(10, 3)
df = pd.DataFrame(ndarr)
df.columns = ['a', 'b', 'c']
df['d'] = np.random.normal(300, 100, 10)
>>> df
a b c d
0 1 2 3 262.816747
1 1 2 3 240.139085
2 1 2 3 204.224083
3 1 2 3 231.024752
4 1 2 3 263.176338
5 2 2 3 440.371621
6 2 2 3 221.762452
7 2 2 3 197.290268
8 2 2 3 275.925549
9 2 2 3 238.471850
## create the Tree via pandas
tree = Tree.from_pandas_df(df, independent_variable_columns, dep_variable, dep_variable_type='continuous')
## print the tree (though not enough power to split)
>>> tree.print_tree()
([], {'s.t.d': 86.562258585515579, 'mean': 297.52027436303212}, <Invalid Chaid Split>)
df
: Pandas DataFramei_variables: Array<string>
: Independent variable column namesd_variable: String
: Dependent variable column nameopts: {}
:alpha_merge: Float (default = 0.05)
: If the respective test for a given pair of predictor categories is not statistically significant as defined by analpha_merge
value, the least significant predictor categories are merged and the splitting of the node is attempted with the newly formed categoriesmax_depth: Integer (default = 2)
: The maximum depth of the treemin_parent_node_size: Float (default = 30)
: The minimum number of respondents required for a split to occur on a particular nodemin_child_node_size: Float (default = 0)
: If the split of a node results in a child node whose node size is less thanmin_child_node_size
, child nodes that have too few cases (as with this minimum) will merge with the most similar child node as measured by the largest of the p-values. However, if the resulting number of child nodes is 1, the node will not be split.split_threshold: Float (default = 0)
: The split threshold when bucketing root node surrogate splitsweight: String (default = None)
: The name of the weight columndep_variable_type (default = categorical, other_options = continuous)
: Whether the dependent variable is 'categorical' or 'continuous' Running from the Command Line
You can play around with the repo by cloning and running this from the command line:
python -m CHAID tests/data/titanic.csv survived sex embarked --max-depth 4 --min-parent-node-size 2 --alpha-merge 0.05
It calls the print_tree()
method, which prints the tree to terminal:
([], {0: 809, 1: 500}, (sex, p=1.47145310169e-81, chi=365.886947811, groups=[['female'], ['male']]))
├── (['female'], {0: 127, 1: 339}, (embarked, p=9.17624191599e-07, chi=24.0936494474, groups=[['C', '<missing>'], ['Q', 'S']]))
│ ├── (['C', '<missing>'], {0: 11, 1: 104}, <Invalid Chaid Split>)
│ └── (['Q', 'S'], {0: 116, 1: 235}, <Invalid Chaid Split>)
└── (['male'], {0: 682, 1: 161}, (embarked, p=5.017855245e-05, chi=16.4413525404, groups=[['C'], ['Q', 'S']]))
├── (['C'], {0: 109, 1: 48}, <Invalid Chaid Split>)
└── (['Q', 'S'], {0: 573, 1: 113}, <Invalid Chaid Split>)
or to test the continuous dependent variable case:
python -m CHAID tests/data/titanic.csv fare sex embarked --max-depth 4 --min-parent-node-size 2 --alpha-merge 0.05 --dependent-variable-type continuous
([], {'s.t.d': 51.727293077231302, 'mean': 33.270043468296414}, (embarked, p=8.46027456424e-24, score=55.3476155546, groups=[['C'], ['Q', '<missing>'], ['S']]), dof=1308))
├── (['C'], {'s.t.d': 84.029951444532529, 'mean': 62.336267407407405}, (sex, p=0.0293299541476, score=4.7994643184, groups=[['female'], ['male']]), dof=269))
│ ├── (['female'], {'s.t.d': 90.687664523113241, 'mean': 81.12853982300885}, <Invalid Chaid Split>)
│ └── (['male'], {'s.t.d': 76.07029674707077, 'mean': 48.810619108280257}, <Invalid Chaid Split>)
├── (['Q', '<missing>'], {'s.t.d': 15.902095006812658, 'mean': 13.490467999999998}, <Invalid Chaid Split>)
└── (['S'], {'s.t.d': 37.066877311088625, 'mean': 27.388825164113786}, (sex, p=3.43875930713e-07, score=26.3745361415, groups=[['female'], ['male']]), dof=913))
├── (['female'], {'s.t.d': 48.971933059814894, 'mean': 39.339305154639177}, <Invalid Chaid Split>)
└── (['male'], {'s.t.d': 28.242580058030033, 'mean': 21.806819261637241}, <Invalid Chaid Split>)
Note that the frequency of the dependent variable is replaced with the standard deviation and mean of the continuous set at each node and that any NaNs in the dependent set are automatically converted to 0.0.
Append --rules
to the cli or call tree.classification_rules(node)
(either pass in the node or if node is None then it will return all splitting rules)
python -m CHAID tests/data/titanic.csv fare sex embarked --max-depth 4 --min-parent-node-size 2 --alpha-merge 0.05 --dependent-variable-type continuous --rules
{'node': 2, 'rules': [{'variable': 'sex', 'data': ['female']}, {'variable': 'embarked', 'data': ['C']}]}
{'node': 3, 'rules': [{'variable': 'sex', 'data': ['male']}, {'variable': 'embarked', 'data': ['C']}]}
{'node': 4, 'rules': [{'variable': 'embarked', 'data': ['Q', '<missing>']}]}
{'node': 6, 'rules': [{'variable': 'sex', 'data': ['female']}, {'variable': 'embarked', 'data': ['S']}]}
{'node': 7, 'rules': [{'variable': 'sex', 'data': ['male']}, {'variable': 'embarked', 'data': ['S']}]}
Run python -m CHAID -h
to see description of command line arguments
CHAID uses pytest
for its unit testing. The tests can be run from the root of a checkout with:
py.test
If you so wish to run the unit tests across multiple python versions to make sure your changes are compatible, run: tox
(detox
to run in parallel). You may need to run pip install tox tox-pyenv detox
& brew install pyenv
beforehand.
- Unlike SPSS, this library doesn't modify the data internally. This means that weight variables aren't rounded as they are in SPSS.
- Every row is valid, even if all values are NaN or undefined. This is different to SPSS where in the weighted case it will strip out all rows if all the independent variables are NaN
- All columns are currently treated as nominal
- Accuracy Estimation using Machine Learning techniques on the data
- Binning of continuous independent variables
gem install github_changelog_generator && github_changelog_generator --exclude-labels maintenance,refactor,testing