A calculus library for javascript and NPM. Created by Blake Sanie.
$ npm install calculess
Import and initialize package
var Calculess = require('calculess');
var Calc = Calculess.prototype;
Evaluate a limit
Calc.limAt( x , function );
Evaluate a limit from the left
Calc.limLeftOf( x , function );
Evaluate a limit from the right
Calc.limRightOf( x , function );
- Accept ±Infinity as x value (parameter)
- Can output ±Infinity
- Output NaN when the limit does not exist
function recip(x) {
return 1 / x;
}
Calc.limLeftOf(0, recip); // -Infinity
Calc.limRightOf(0, recip); // Infinity
Calc.limAt(0, recip); // NaN
Calc.limAt(1, recip); // 1
Evaluate f'(x)
- Note: If the given function is not continuous or differentiable at the target, NaN is returned
Calc.deriv( x , function );
Evaluate a derivative to the nth degree of x
- Note: as the degree increases, .nthDeriv() becomes less accurate. Also, continuity and differentiability are not checked.
Calc.nthDeriv( degree, x , function );
function para(x) {
return x * x;
}
Calc.deriv(2, para); // 4
Calc.nthDeriv(2, 2, para); // 2
Calc.nthDeriv(3, 2, para); // 0
function sharp(x) {
return Math.abs(x);
}
Calc.deriv(1, sharp); // 1
Calc.nthDeriv(2, 1, para); // 0
Calc.deriv(0, sharp); // NaN
Evaluate an integral using midpoint Riemann Sums
Calc.integral( start , end , function , numSubintervals );
Evaluate a function's average value
Calc.averageValue( start , end , function , numSubintervals );
Note: As the number of subintervals increases, .intregral() becomes more accurate, though more time is required for calculations
function sin(x) {
return Math.sin(x);
}
Calc.integral(0, Math.PI, sin, 10); // 2.0082484079079745
Calc.integral(0, Math.PI, sin, 100); // 2.000082249070989
Calc.integral(0, Math.PI, sin, 1000); // 2.000000822467294
Calc.integral(0, Math.PI, sin, 10000); // 2.000000008224376
Calc.integral(0, Math.PI, sin, 100000); // 2.000000000081865