/tensorflow-serving-yolov3

主要对原tensorflow版本算法进行了网络修改,显示调整,数据处理等细节优化,训练了Visdrone2019无人机数据集, 详细说明了 从本地训练到serving端部署yolov3的整个流程, 准确率 86%左右!FPS在1080上测试15-20帧左右!

Primary LanguagePython

Introduction

主要对原tensorflow-yolov3版本做了许多细节上的改进,训练了Visdrone2019数据集,准确率在87%左右, 如果觉得好用记得star一下哦,谢谢! 步骤十分详细,特别适合新手入门serving端部署,有什么问题可以提issues,下面是改进细节:

1 修改了网络结构,支持了tensorflow-serving部署,自己训练的数据集也可以在线部署,并给出了 docker+yolov3-api测试脚本

2 修改了ulits文件,优化了demo展示,可以支持中文展示,添加了字体

3 详细的中文注释,代码更加易读,添加了数据敏感性处理,一定程度避免index的错误

4 修改了训练代码,支持其他数据集使用预训练模型了,模型体积减小三分之二,图片视频demo展示完都支持保存到本地,十分容易操作

5 借鉴视频检测的原理,添加了批量图片测试脚本,速度特别快(跟处理视频每一帧一样的速度)

6 添加了易使用的Anchors生成脚本以及各步操作完整的操作流程

Part 1. demo展示

  1. 下载这份代码(本算法暂时是在ubuntu1804系统上实现的,后续更新windows版本)
$ git clone https://github.com/byronnar/tensorflow-serving-yolov3.git
$ cd tensorflow-serving-yolov3
$ pip install -r requirements.txt
  1. Load the pre-trained TF checkpoint(yolov3_coco.ckpt) and export a .pb file. The checkpoint is provided from the forked repo not from the YOLO author though.

下载预训练模型放到 checkpoint文件夹里面

百度网盘链接: https://pan.baidu.com/s/1Sz5c5WoyL31HRVCvGz8_IQ 密码:Q4j1

谷歌云盘链接: https://drive.google.com/open?id=1aVnosAJmZYn1QPGL0iJ7Dnd4PTAukSU4

$ cd checkpoint
$ tar -xvf yolov3_coco.tar.gz
$ cd ..
$ python convert_weight.py
$ python freeze_graph.py
  1. Then you will get the .pb file in the root path., and run the demo script
$ python image_demo_Chinese.py             # 中文显示
$ python image_demo.py                                # 英文显示
$ python video_demo.py # if use camera, set video_path = 0

Chinese image:

images

  1. Load the checkpoint file and export the SaveModel object to the savemodel folder for TensorFlow serving
$ python save_model.py
  1. 将产生的saved model文件夹里面的 yolov3 文件夹复制到 tmp 文件夹下面,再运行
$ docker run -p 8501:8501 --mount type=bind,source=/tmp/yolov3/,target=/models/yolov3 -e MODEL_NAME=yolov3 -t tensorflow/serving &

$ cd serving-yolov3 $ python yolov3_api.py

Api Results: images

Part 2. 详细训练过程

2.1先准备好数据集,做成VOC2007格式,再通过聚类算法产生anchors(也可以采用默认的anchors,除非你的数据集跟voc相差特别大, 数据集可以用官方VOC2007)

$ python anchors_generate.py

2.2 产生训练数据txt文件 $ python split.py train.txt 里面应该像这样: xxx/xxx.jpg 18.19,6.32,424.13,421.83,20 323.86,2.65,640.0,421.94,20 xxx/xxx.jpg 48,240,195,371,11 8,12,352,498,14 image_path x_min, y_min, x_max, y_max, class_id x_min, y_min ,..., class_id x_min, y_min etc. corresponds to the data in XML files

2.3 修改names文件

  • [class.names]
person
bicycle
car
...
toothbrush

Train: 2.4 修改 config.py 文件,主要根据显存大小,注意batch_size,输入尺寸等参数

$ python train.py $ python freeze_graph.py

2.5 预测,修改 路径等相关参数: modify the image_demo.py $ python image_demo.py

Visdrone results: visdrone

2.6 产生pb文件跟variables文件夹用于部署:

1 Using own datasets to deployment, you need first modify the yolov3.py line 47

$ python save_model.py

2 将产生的saved model文件夹里面的 yolov3 文件夹复制到 tmp 文件夹下面,再运行

$ docker run -p 8501:8501 --mount type=bind,source=/tmp/yolov3/,target=/models/yolov3 -e MODEL_NAME=yolov3 -t tensorflow/serving &

$ cd serving-yolov3

$ python yolov3_api.py

接下来要做的:

编写一下文档,方便大家windows下运行这个仓库!

Reference

YunYang1994