| Developed by | Guardrails AI | | Date of development | Feb 15, 2024 | | Validator type | Format | | Blog | | | License | Apache 2 | | Input/Output | Output |
This validator checks to see if a given numerical output is within an expected range.
- Dependencies:
- guardrails-ai>=0.4.0
$ guardrails hub install hub://guardrails/valid_rangeIn this example, we’ll use the validator to check that a field of a JSON output is within an expected range.
# Import Guard and Validator
from pydantic import BaseModel, Field
from guardrails.hub import ValidRange
from guardrails import Guard
# Initialize Validator
val = ValidRange(min=0, max=10, on_fail="exception")
# Create Pydantic BaseModel
class PetInfo(BaseModel):
pet_name: str
pet_age: int = Field(validators=[val])
# Create a Guard to check for valid Pydantic output
guard = Guard.from_pydantic(output_class=PetInfo)
# Run LLM output generating JSON through guard
guard.parse(
"""
{
"pet_name": "Caesar",
"pet_age": 5
}
"""
)
try:
# Run LLM output generating JSON through guard
guard.parse(
"""
{
"pet_name": "Caesar",
"pet_age": 15
}
"""
)
except Exception as e:
print(e)Output:
Validation failed for field with errors: Value 15 is greater than 10.__init__(self, min=None, max=None, on_fail="noop")
min(int): The inclusive minimum value of the range.max(int): The inclusive maximum value of the range.on_fail(str, Callable): The policy to enact when a validator fails. Ifstr, must be one ofreask,fix,filter,refrain,noop,exceptionorfix_reask. Otherwise, must be a function that is called when the validator fails.
Initializes a new instance of the Validator class.
Parameters:
validate(self, value, metadata={}) -> ValidationResult
- This method should not be called directly by the user. Instead, invoke
guard.parse(...)where this method will be called internally for each associated Validator. - When invoking
guard.parse(...), ensure to pass the appropriatemetadatadictionary that includes keys and values required by this validator. Ifguardis associated with multiple validators, combine all necessary metadata into a single dictionary. value(Any): The input value to validate.metadata(dict): A dictionary containing metadata required for validation. No additional metadata keys are needed for this validator.
Validates the given value using the rules defined in this validator, relying on the metadata provided to customize the validation process. This method is automatically invoked by guard.parse(...), ensuring the validation logic is applied to the input data.
Note:
Parameters: