/tcm_bert

BERT for TCM clinical records classification

Primary LanguagePythonApache License 2.0Apache-2.0

TCM-BERT: Traditional Chinese Medicine Clinical Records Classification with BERT and Domain Specific Corpora

The implementation of TCM-BERT in our paper:

Liang Yao, Zhe Jin, Chengsheng Mao, Yin Zhang and Yuan Luo. "Traditional Chinese Medicine Clinical Records Classification with BERT and Domain Specific Corpora." Accepted by Journal of the American Medical Informatics Association (JAMIA).

The repository is modified from pytorch-pretrained-BERT.

Installing requirement packages

pip install -r requirements.txt

Data

Training, validation and test records are in ./TCMdata/train.txt, ./TCMdata/val.txt and ./TCMdata/val.txt

Six example external unlabeled clinical records are in ./TCMdata/domain_corpus.txt. Due to CKCEST policy, we could not provide all 46,205 records. But we provide our fine-tuned models.

The fine-tuned model from the second step is here. The final fine-tuned text classifier is here.

How to run

1. Language model fine-tuning

python3 simple_lm_finetuning.py 
--train_corpus ./TCMdata/domain_corpus.txt 
--bert_model bert-base-chinese 
--do_lower_case 
--output_dir finetuned_lm_domain_corpus/ 
--do_train

2. Final text classifier fine-tuning

python3 run_classifier.py 
--do_eval 
--do_predict 
--data_dir ./TCMdata 
--bert_model bert-base-chinese 
--max_seq_length 400 
--train_batch_size 32 
--learning_rate 2e-5 
--num_train_epochs 3.0 
--output_dir ./output 
--gradient_accumulation_steps 16 
--task_name demo  
--do_train 
--finetuned_model_dir ./finetuned_lm_domain_corpus

Reproducing results

  1. Downloading the fine-tuned language model.
  2. Uncompressing the zip file in current folder.
  3. Running the final text classifier fine-tuning.
  4. The results of BERT can be reproduced by running the final text classifier fine-tuning without --finetuned_model_dir ./finetuned_lm_domain_corpus.