This repository is the official implementation of AnimateDiff.
AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning
Yuwei Guo,
Ceyuan Yang*,
Anyi Rao,
Yaohui Wang,
Yu Qiao,
Dahua Lin,
Bo Dai
*Corresponding Author
- Code Release
- Arxiv Report
- GPU Memory Optimization
- Gradio Interface
Our approach takes around 60 GB GPU memory to inference. NVIDIA A100 is recommanded.
git clone https://github.com/guoyww/animatediff.git
cd animatediff
conda create -n animatediff python=3.8
conda activate animatediff
pip install -r requirments.txt
We provide two versions of our Motion Module, which are trained on stable-diffusion-v1-4 and finetuned on v1-5 seperately. It's recommanded to try both of them for best results.
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 models/StableDiffusion/
bash download_bashscripts/0-MotionModule.sh
You may also directly download the motion module checkpoints from Google Drive, then put them in models/Motion_Module/
folder.
Here we provide inference configs for 6 demo T2I on CivitAI. You may run the following bash scripts to download these checkpoints.
bash download_bashscripts/1-ToonYou.sh
bash download_bashscripts/2-Lyriel.sh
bash download_bashscripts/3-RcnzCartoon.sh
bash download_bashscripts/4-MajicMix.sh
bash download_bashscripts/5-RealisticVision.sh
bash download_bashscripts/6-Tusun.sh
bash download_bashscripts/7-FilmVelvia.sh
bash download_bashscripts/8-GhibliBackground.sh
After downloading the above peronalized T2I checkpoints, run the following commands to generate animations.
python -m scripts.animate --config configs/prompts/1-ToonYou.yaml
python -m scripts.animate --config configs/prompts/2-Lyriel.yaml
python -m scripts.animate --config configs/prompts/3-RcnzCartoon.yaml
python -m scripts.animate --config configs/prompts/4-MajicMix.yaml
python -m scripts.animate --config configs/prompts/5-RealisticVision.yaml
python -m scripts.animate --config configs/prompts/6-Tusun.yaml
python -m scripts.animate --config configs/prompts/7-FilmVelvia.yaml
python -m scripts.animate --config configs/prompts/8-GhibliBackground.yaml
Here we demonstrate several best results we got in previous experiments.
Model:ToonYou
Model:Counterfeit V3.0
Model:Realistic Vision V2.0
Model: majicMIX Realistic
Model:RCNZ Cartoon
Model:FilmVelvia
@misc{guo2023animatediff,
title={AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning},
author={Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai},
year={2023},
eprint={2307.04725},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Yuwei Guo: guoyuwei@pjlab.org.cn
Ceyuan Yang: yangceyuan@pjlab.org.cn
Bo Dai: daibo@pjlab.org.cn
Codebase built upon Tune-a-Video.