Tele-Knowledge Pre-training for Fault Analysis
Author: Zhuo Chenβ , Wen Zhangβ , Yufeng Huang, Mingyang Chen,Yuxia Geng, Hongtao Yu, Zhen Bi, Yichi Zhang, Zhen Yao, Huajun Chen (College of Computer Science, Zhejiang University) Wenting Song, Xinliang Wu, Yi Yang, Mingyi Chen, Zhaoyang Lian, Yingying Li, Lei Cheng (NAIE PDU, Huawei Technologies Co., Ltd.) In this paper we propose a tele-domain pre-trained language model named TeleBERT to learn the general semantic knowledge in the telecommunication field together with its improved version KTeleBERT, which incorporates those implicit information in machine log data and explicit knowledge contained in our Tele-product Knowledge Graph (Tele-KG).
- The data examples are available
here
. Considering the sensitivity of some data, we cannot publish all of them.
- Visualization for Numerical Data
- Visualization for Abnormal KPI Detection Data
transformers >= 4.21.2
PyTorch >= 1.6.0
tqdm
ltp
For more details: config.py
--train_strategy
--batch_size
--batch_size_ke
--batch_size_od
--batch_size_ad
--epoch
--save_model {0,1}
--save_pretrain {0,1}
--from_pretrain {0,1}
--dump_path Experiment dump path
--random_seed
--train_ratio ratio for train/test
--final_mlm_probability
--mlm_probability_increase {linear,curve}
--mask_stratege {rand,wwm,domain}
--ernie_stratege
--use_mlm_task {0,1}
--add_special_word {0,1}
--freeze_layer {0,1,2,3,4}
--special_token_mask {0,1}
--emb_init {0,1}
--cls_head_init {0,1}
--use_awl {0,1}
--mask_loss_scale
--ke_norm
--ke_dim
--ke_margin
--neg_num
--adv_temp The temperature of sampling in self-adversarial negative sampling.
--ke_lr
--only_ke_loss
--use_NumEmb
--contrastive_loss {0,1}
--l_layers L_LAYERS
--use_kpi_loss
--only_test {0,1}
--mask_test {0,1}
--embed_gen {0,1}
--ke_test {0,1}
--ke_test_num
--path_gen
--order_load
--order_num
--od_type {linear_cat,vertical_attention}
--eps EPS label smoothing
--num_od_layer
--plm_emb_type {cls,last_avg}
--order_test_name
--order_threshold
--rank RANK rank to dist
--dist DIST whether to dist
--device DEVICE device id (i.e. 0 or 0,1 or cpu)
--world-size WORLD_SIZE number of distributed processes
--dist-url DIST_URL url used to set up distributed training
--local_rank LOCAL_RANK
- train:
bash run.sh
- test:
bash test.sh
Note:
- you can open the
.sh
file for default parameter modification.
Please condiser citing this paper if you use the code
from our work.
Thanks a lot :)
@inproceedings{DBLP:conf/icde/00070HCGYBZYSWY23,
author = {Zhuo Chen and
Wen Zhang and
Yufeng Huang and
Mingyang Chen and
Yuxia Geng and
Hongtao Yu and
Zhen Bi and
Yichi Zhang and
Zhen Yao and
Wenting Song and
Xinliang Wu and
Yi Yang and
Mingyi Chen and
Zhaoyang Lian and
Yingying Li and
Lei Cheng and
Huajun Chen},
title = {Tele-Knowledge Pre-training for Fault Analysis},
booktitle = {{ICDE}},
pages = {3453--3466},
publisher = {{IEEE}},
year = {2023}
}