NAME
Data::Processor - Transform Perl Data Structures, Validate Data against a Schema, Produce Data from a Schema, or produce documentation directly from information in the Schema.
SYNOPSIS
use Data::Processor;
my $schema = {
section => {
description => 'a section with a few members',
error_msg => 'cannot find "section" in config',
members => {
foo => {
# value restriction either with a regex..
value => qr{f.*},
description => 'a string beginning with "f"'
},
bar => {
# ..or with a validator callback.
validator => sub {
my $self = shift;
my $parent = shift;
# undef is "no-error" -> success.
no strict 'refs';
return undef
if $self->{value} == 42;
}
},
wuu => {
optional => 1
}
}
}
};
my $p = Data::Processor->new($schema);
my $data = {
section => {
foo => 'frobnicate',
bar => 42,
# "wuu" being optional, can be omitted..
}
};
my $error_collection = $p->validate($data, verbose=>0);
# no errors :-)
# in case of errors:
# ------------------
# print each error on one line.
say $error_collection;
# same
for my $e ($error_collection->as_array){
say $e;
# do more..
}
DESCRIPTION
Data::Processor is a tool for transforming, verifying, and producing Perl data structures from / against a schema, defined as a Perl data structure.
METHODS
new
my $processor = Data::Processor->new($schema);
optional parameters: - indent: count of spaces to insert when printing in verbose mode. Default 4 - depth: level at which to start. Default is 0. - verbose: Set to a true value to print messages during processing.
validate
Validate the data against a schema. The schema either needs to be present already or be passed as an argument.
my $error_collection = $processor->validate($data, verbose=>0);
validate_schema
check that the schema is valid. This method gets called upon creation of a new Data::Processor object.
my $error_collection = $processor->validate_schema();
merge_schema
merges another schema into the schema (optionally at a specific node)
my $error_collection = $processor->merge_schema($schema_2);
merging rules:
- merging transformers will result in an error
- merge checks if all merged elements match existing elements
- non existing elements will be added from merging schema
- validators from existing and merging schema get combined
schema
Returns the schema. Useful after schema merging.
transform_data
Transform one key in the data according to rules specified as callbacks that themodule calls for you. Transforms the data in-place.
my $validator = Data::Processor::Validator->new($schema, data => $data)
my $error_string = $processor->transform($key, $schema_key, $value);
This is not tremendously useful at the moment, especially because validate() transforms during validation.
make_data
Writes a data template using the information found in the schema.
my $data = $processor->make_data(data=>$data);
make_pod
Write descriptive pod from the schema.
my $pod_string = $processor->make_pod();
SCHEMA REFERENCE
Top-level keys and members
The schema is described by a nested hash. At the top level, and within a members definition, the keys are the same as the structure you are describing. So for example:
my $schema = {
coordinates => {
members => {
x => {
description => "the x coordinate",
},
y => {
description => "the y coordinate",
},
}
}
};
This schema describes a structure which might look like this:
{ coordinates => { x => 1, y => 2} }
Obviously this can be nested all the way down:
my $schema = {
house => {
members => {
bungalow => {
members => {
rooms => {
#...
}
}
}
}
}
};
array
To have a key point to an array of things, simply use the array key. So:
my $schema = {
houses => {
array => 1,
}
};
Would describe a structure like:
{ houses => [] }
And of course you can nest within here so:
my $schema = {
houses => {
array => 1,
members => {
name => {},
windows => {
array => 1,
}
},
},
};
Might describe:
{
houses => [
{ name => 'bob',
windows => []},
{ name => 'harry',
windows => []},
]
}
description
The description key within a definition describes that value:
my $schema = {
x => { description => 'The x coordinate' },
};
error_msg
The error_msg key can be set to provide extra context for when a value is not found or fails the value test.
optional
Most values are required by default. To reverse this use the "optional" key:
my $schema = {
x => {
optional => 1,
},
y => {
# required
},
};
regex
Treating regular expressions as keys
If you set "regex" within a definition then it's key will be treated as a regular expression.
my $schema = {
'color_.+' => {
regex => 1
},
};
my $data = { color_red => 'red', color_blue => 'blue'};
Data::Processor->new($schema)->validate($data);
transformer
transform the data for further processing
Transformer maps to a sub ref which will be passed the value and the containing structure. Your return value provides the new value.
my $schema = {
x => {
transformer => sub{
my( $value, $section ) = @_;
$value = $value + 1;
return $value;
}
}
};
my $data = { x => 1 };
my $p = Data::Processor->new($schema);
my $val = Data::Processor::Validator->new( $schema, data => $data);
$p->transform_data('x', 'x', $val);
say $data->{x}; #will print 2
If you wish to provide an error from the transformer you should die with a hash reference with a key of "msg" mapping to your error:
my $schema = {
x => {
transformer => sub{
die { msg => "SOMETHING IS WRONG" };
}
},
};
my $p = Data::Processor->new($schema);
my $data = { x => 1 };
my $val = Data::Processor::Validator->new( $schema, data => $data);
my $error = $p->transform_data('x', 'x', $val);
say $error; # will print: error transforming 'x': SOMETHING IS WRONG
The transformer is called before any validator, so:
my $schema = {
x => {
transformer => sub{
my( $value, $section ) = @_;
return $value + 1;
},
validator => sub{
my( $value ) = @_;
if( $value < 2 ){
return "too low"
}
},
},
};
my $p = Data::Processor->new( $schema );
my $data = { x => 1 };
my $errors = $p->validate();
say $errors->count; # will print 0
say $data->{x}; # will print 2
value
checking against regular expression
To check a value against a regular expression you can use the value key within a definition, mapped to a quoted regex:
my $schema = {
x => {
value => qr{\d+}
}
};
validator
checking more complex values using a callback
To conduct extensive checks you can use validator and provide a callback. Your sub will be passed the value and it's container. If you return anything it will be regarded as an error message, so to indicate a valid value you return nothing:
my $schema = {
bob => {
validator => sub{
my( $value, $section ) = @_;
if( $value ne 'bob' ){
return "Bob must equal bob!";
}
return;
},
},
};
my $p = Data::Processor->new($schema);
# would validate:
$p->validate({ bob => "bob" });
# would fail:
$p->validate({ bob => "harry"});
See also Data::Processor::ValidatorFactory
Validator objects
Validator may also be an object, in this case the object must implement a "validate" method.
The "validate" method should return undef if valid, or an error message string if there is a problem.
package FiveChecker;
sub new {
bless {}, shift();
}
sub validate{
my( $self, $val ) = @_;
$val == 5 or return "I wanted five!";
return;
}
package main;
my $checker = FiveChecker->new;
my $schema = (
five => (
validator => $checker,
),
);
my $dp = Data::Processor->new($schema);
$dp->validate({five => 6}); # fails
$dp->validate({five => 5}); # passes
You can for example use MooseX::Types and Type::Tiny type constraints that are objects which offer validate methods which work this way.
use Types::Standard -all;
# ... in schema ...
foo => {
validator => ArrayRef[Int],
description => 'an arrayref of integers'
},
AUTHOR
Matthias Bloch matthias.bloch@puffin.ch
COPYRIGHT
Copyright 2015- Matthias Bloch
LICENSE
This library is free software; you can redistribute it and/or modify it under the same terms as Perl itself.