AI Benchmark Alpha is an open source python library for evaluating AI performance of various hardware platforms, including CPUs, GPUs and TPUs. The benchmark is relying on TensorFlow machine learning library, and is providing a lightweight and accurate solution for assessing inference and training speed for key Deep Learning models.
In its entirety, AI Benchmark is executed on the following test scenarios:
- Classification
- MobileNet-V2
- Inception-V3
- Inception-V4
- Inception-ResNet-V2
- ResNet-V2-50
- ResNet-V2-152
- VGG-16
- Image-to-Image Mapping
- SRCNN 9-5-5
- VGG-19 Super-Res
- ResNet-SRGAN
- ResNet-DPED
- U-Net
- Nvidia-SPADE
- Image Segmentation
- ICNet
- PSPNet
- DeepLab
- Inpainting
- Pixel-RNN
- Sentence Sentiment Analysis
- LSTM-Sentiment
For more information and results, please visit the project website: http://ai-benchmark.com/alpha
Install the required packages:
pip install --no-cache-dir -r requirements.txt
Run the benchmark:
python main.py
Build the docker image
sh build.sh
Apply the k8s deployment
# k apply -f benchmark-job.yml
apiVersion: batch/v1
kind: Job
metadata:
name: ai-benchmark
namespace: gpu-test-workloads
labels:
app: ai-benchmark
spec:
parallelism: 1
completions: 2
template:
metadata:
labels:
app: ai-benchmark
spec:
restartPolicy: Never
containers:
- name: ai-benchmark
image: vgpu-benchmark:v0.0.1
resources:
limits:
cpu: "11"
memory: "60Gi"
nvidia.com/gpu: '1'
requests:
cpu: "11"
memory: "60Gi"
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
imagePullPolicy: IfNotPresent
tolerations:
- key: nvidia.com/gpu
operator: Exists
effect: NoSchedule
priorityClassName: system-cluster-critical
>> AI-Benchmark-v.0.1.2
>> Let the AI Games begin..
* TF Version: 2.16.1
* Platform: Linux-6.1.77-gardenlinux-amd64-x86_64-with-glibc2.35
* CPU: N/A
* CPU RAM: 1007 GB
* GPU/0: NVIDIA H100 80GB HBM3
* GPU RAM: 77.1 GB
* CUDA Version: 12.3
* CUDA Build: V12.3.107
The benchmark is running...
The tests might take up to 20 minutes
Please don't interrupt the script
##### Config Done
1/18. MobileNet-V2
1.1 - training | batch=50, size=224x224: 34.8 ± 0.8 ms
2/18. Inception-V3
2.1 - training | batch=20, size=346x346: 43.2 ± 0.5 ms
3/18. Inception-V4
3.1 - training | batch=10, size=346x346: 43.4 ± 0.8 ms
4/18. Inception-ResNet-V2
4.1 - training | batch=8, size=346x346: 50.9 ± 0.5 ms
5/18. ResNet-V2-50
5.1 - training | batch=10, size=346x346: 24.1 ± 0.4 ms
6/18. ResNet-V2-152
6.1 - training | batch=10, size=256x256: 37.4 ± 0.6 ms
7/18. VGG-16
7.1 - training | batch=2, size=224x224: 15.6 ± 0.5 ms
8/18. SRCNN 9-5-5
8.1 - training | batch=10, size=512x512: 57.7 ± 0.7 ms
9/18. VGG-19 Super-Res
9.1 - training | batch=10, size=224x224: 38.3 ± 19.5 ms
10/18. ResNet-SRGAN
10.1 - training | batch=5, size=512x512: 32.7 ± 0.7 ms
11/18. ResNet-DPED
11.1 - training | batch=15, size=128x128: 33.4 ± 0.6 ms
12/18. U-Net
12.1 - training | batch=4, size=256x256: 35.5 ± 0.5 ms
13/18. Nvidia-SPADE
13.1 - training | batch=1, size=128x128: 25.2 ± 0.4 ms
14/18. ICNet
14.1 - training | batch=10, size=1024x1536: 232 ± 2 ms
15/18. PSPNet
15.1 - training | batch=1, size=512x512: 23.5 ± 0.5 ms
16/18. DeepLab
16.1 - training | batch=1, size=384x384: 26.8 ± 0.6 ms
17/18. Pixel-RNN
17.1 - training | batch=10, size=64x64: 977 ± 40 ms
18/18. LSTM-Sentiment
18.1 - training | batch=10, size=1024x300: 581 ± 10 ms
Device Training Score: 56922