halolimat/Social-media-Depression-Detector
:pensive: :disappointed: :persevere: :confounded: :weary: Detect depression on social media using the ssToT method introduced in our ASONAM 2017 paper titled "Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media"
Jupyter NotebookGPL-3.0
Stargazers
- abhilashbhowmikMumbai
- abhnvxAvalon
- AdamBouhmad@hashicorp
- andreasasprouflick.tech
- Arong-gong
- bodhwani@ICT-USC @ACM-VIT
- Conor0CallaghanSasana
- dominictabu
- douglaszaltron@luizalabs
- edjustice
- ehsongBergen
- harsh3029Delhi
- jtbates@liftoffio
- LeiTong02AstraZeneca
- lualton
- md-k-sarker
- Monireh2
- mrhasankoc
- PandaWhoCodesChennai
- petcupaulaCopenhagen, Denmark
- polyrandBarcelona
- pragmatist-strategistStudent @ B. Tech in Computer Science @ DTU .
- prateekiiest@microsoft
- prateeksharma51Deloitte USI
- rafi0486Kochi, Ernakulam
- rajs96Cultivate
- samiei2Orlando
- santosh2702Infosys Limited
- skilfullycurled
- sreemathisomasundaramIndia
- srikanthnadella
- vegasmansion
- vsushruth
- wguillemaBAC Partners
- wnparkerPressReader
- yazdavarPeerlogic