/COIL

NAACL2021 - COIL Contextualized Lexical Retriever

Primary LanguagePythonApache License 2.0Apache-2.0

COIL

Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning COIL models well as encoding and retrieving with COIL index.

The code was refactored from our original experiment version to use the huggingface Trainer interface for future compatibility. This repo will also host variants of COIL. We welcome pull requests!

Contextualized Exact Lexical Match

COIL systems are based on the idea of contextualized exact lexical match. It replaces term frequency based term matching in classical systems like BM25 with contextualized word representation similarities. It thereby gains the ability to model matching of context. Meanwhile COIL confines itself to comparing exact lexical matched tokens and therefore can retrieve efficiently with inverted list form data structure. Details can be found in our paper.

Updates

Dependencies

The code has been tested with,

pytorch==1.8.1
transformers==4.2.1
datasets==1.1.3

To use the retriever, you need in addition,

torch_scatter==2.0.6
faiss==1.7.0

Resource

MSMARCO Passage Ranking

Here we present two systems: one uses hard negatives (HN) and the other does not. COIL w/o HN is trained with BM25 negatives, and COIL w/ HN is trained in addition with hard negatives mined with another trained COIL.

Configuration MARCO DEV MRR@10 TREC DL19 NDCG@5 TREC DL19 NDCG@10 Chekpoint MARCO Train Ranking MARCO Dev Ranking
COIL w/o HN 0.353 0.7285 0.7136 model-checkpoint.tar.gz train-ranking.tar.gz dev-ranking.tsv
COIL w/ HN 0.373 0.7453 0.7055 hn-checkpoint.tar.gz train-ranking.tar.gz dev-ranking.tsv
  • Right Click to Download.
  • The COIL w/o HN model was a rerun as we lost the original checkpoint. There's a slight difference in dev performance, about 0.5% and also some improvement on the DL2019 test.

Tokenized data and model checkpoint link

Hard negative data and model checkpoint link

more to be added soon

Citation

@inproceedings{gao-etal-2021-coil,
    title = "{COIL}: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List",
    author = "Gao, Luyu  and
      Dai, Zhuyun  and
      Callan, Jamie",
    booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.naacl-main.241",
    doi = "10.18653/v1/2021.naacl-main.241",
    pages = "3030--3042",
}

Usage

The following sections will work through how to use this code base to train and retrieve over the MSMARCO passage ranking data set.

Training

You can download the train file psg-train.tar.gz for BERT from our resource link. Alternatively, you can run pre-processing by yourself following the pre-processing instructions.

Extract the training set from the tar ball and run the following code to launch training for msmarco passage.

python run_marco.py \  
  --output_dir $OUTDIR \  
  --model_name_or_path bert-base-uncased \  
  --do_train \  
  --save_steps 4000 \  
  --train_dir /path/to/psg-train \  
  --q_max_len 16 \  
  --p_max_len 128 \  
  --fp16 \  
  --per_device_train_batch_size 8 \  
  --train_group_size 8 \  
  --cls_dim 768 \  
  --token_dim 32 \  
  --warmup_ratio 0.1 \  
  --learning_rate 5e-6 \  
  --num_train_epochs 5 \  
  --overwrite_output_dir \  
  --dataloader_num_workers 16 \  
  --no_sep \  
  --pooling max 

Encoding

After training, you can encode the corpus splits and queries.

You can download pre-processed data for BERT, corpus.tar.gz, queries.{dev, eval}.small.json here.

for i in $(seq -f "%02g" 0 99)  
do  
  mkdir ${ENCODE_OUT_DIR}/split${i}  
  python run_marco.py \  
    --output_dir $ENCODE_OUT_DIR \  
    --model_name_or_path $CKPT_DIR \  
    --tokenizer_name bert-base-uncased \  
    --cls_dim 768 \  
    --token_dim 32 \  
    --do_encode \  
    --no_sep \  
    --p_max_len 128 \  
    --pooling max \  
    --fp16 \  
    --per_device_eval_batch_size 128 \  
    --dataloader_num_workers 12 \  
    --encode_in_path ${TOKENIZED_DIR}/split${i} \  
    --encoded_save_path ${ENCODE_OUT_DIR}/split${i}
done

If on a cluster, the encoding loop can be paralellized. For example, say if you are on a SLURM cluster, use srun,

for i in $(seq -f "%02g" 0 99)  
do  
  mkdir ${ENCODE_OUT_DIR}/split${i}  
  srun --ntasks=1 -c4 --mem=16000 -t0 --gres=gpu:1 python run_marco.py \  
    --output_dir $ENCODE_OUT_DIR \  
    --model_name_or_path $CKPT_DIR \  
    --tokenizer_name bert-base-uncased \  
    --cls_dim 768 \  
    --token_dim 32 \  
    --do_encode \  
    --no_sep \  
    --p_max_len 128 \  
    --pooling max \  
    --fp16 \  
    --per_device_eval_batch_size 128 \  
    --dataloader_num_workers 12 \  
    --encode_in_path ${TOKENIZED_DIR}/split${i} \  
    --encoded_save_path ${ENCODE_OUT_DIR}/split${i}&
done

Then encode the queries,

python run_marco.py \  
  --output_dir $ENCODE_QRY_OUT_DIR \  
  --model_name_or_path $CKPT_DIR \  
  --tokenizer_name bert-base-uncased \  
  --cls_dim 768 \  
  --token_dim 32 \  
  --do_encode \  
  --p_max_len 16 \  
  --fp16 \  
  --no_sep \  
  --pooling max \  
  --per_device_eval_batch_size 128 \  
  --dataloader_num_workers 12 \  
  --encode_in_path $TOKENIZED_QRY_PATH \  
  --encoded_save_path $ENCODE_QRY_OUT_DIR

Note that here p_max_len always controls the maximum length of the encoded text, regardless of the input type.

Retrieval

To use the fast retriever, you need to compile the extension.

To do retrieval, run the following steps,

(Note that there is no dependency in the for loop within each step, meaning that if you are on a cluster, you can distribute the jobs across nodes using srun or qsub.)

  1. build document index shards
for i in $(seq 0 9)  
do  
 python retriever/sharding.py \  
   --n_shards 10 \  
   --shard_id $i \  
   --dir $ENCODE_OUT_DIR \  
   --save_to $INDEX_DIR \  
   --use_torch
done  
  1. reformat encoded query
python retriever/format_query.py \  
  --dir $ENCODE_QRY_OUT_DIR \  
  --save_to $QUERY_DIR \  
  --as_torch
  1. retrieve from each shard
for i in $(seq -f "%02g" 0 9)  
do  
  python retriever/retriever-fast.py \  
      --query $QUERY_DIR \  
      --doc_shard $INDEX_DIR/shard_${i} \  
      --top 1000 \
      --batch_size 512 \
      --save_to ${SCORE_DIR}/intermediate/shard_${i}.pt
done 
  1. merge scores from all shards
python retriever/merger.py \  
  --score_dir ${SCORE_DIR}/intermediate/ \  
  --query_lookup  ${QUERY_DIR}/cls_ex_ids.pt \  
  --depth 1000 \  
  --save_ranking_to ${SCORE_DIR}/rank.txt

python data_helpers/msmarco-passage/score_to_marco.py \  
  --score_file ${SCORE_DIR}/rank.txt

Data Format

For both training and encoding, the core code expects pre-tokenized data.

Training Data

Training data is grouped by query into one or several json files where each line has a query, its corresponding positives and negatives.

{
    "qry": {
        "qid": str,
        "query": List[int],
    },
    "pos": List[
        {
            "pid": str,
            "passage": List[int],
        }
    ],
    "neg": List[
        {
            "pid": str,
            "passage": List[int]
        }
    ]
}

Encoding Data

Encoding data is also formatted into one or several json files. Each line corresponds to an entry item.

{"pid": str, "psg": List[int]}

Note that for code simplicity, we share this format for query/passage/document encoding.