/tools4yolo

Some image augmentation tools for yolov5 (and probably other models)

Primary LanguagePythonMIT LicenseMIT

Some image augmentation tools for yolov5 (and probably other models)

Before you start:

install Pytorch

pip install tools4yolo

Tested against Windows 10 / Python 3.10 / Anaconda

Formating the needle images

# Get some images from somewhere  
# Important! The pictures need to have a transparent background

# The function remove_background_and_resize removes most of the background. If there is some background left, remove it using GIMP or Photoshop 


from tools4yolo import remove_background_and_resize


bands = [
    r"C:\pics\aerosmith",
    r"C:\pics\anthrax",
    r"C:\pics\black_sabbath",
    r"C:\pics\iron_maiden",
    r"C:\pics\judas_priest",
    r"C:\pics\kiss",
    r"C:\pics\krokus",
    r"C:\pics\led_zeppelin",
    r"C:\pics\manowar",
    r"C:\pics\metalchurch",
    r"C:\pics\misfits",
    r"C:\pics\motorhead",
    r"C:\pics\ozzy",
    r"C:\pics\pantera",
    r"C:\pics\saint_vitus",
    r"C:\pics\saxon",
    r"C:\pics\scorpions",
    r"C:\pics\slayer",
    r"C:\pics\whitesnake",
    r"C:\pics\accept",
    r"C:\pics\acdc",
]

for folder in bands:
    folderband = folder.replace(r"C:\pics", r"C:\pics2")
    remove_background_and_resize(
        folder=folder, folderout=folderband, maxwidth=640, maxheight=640
    )

Augmenting the needle images

# To get some variations of the needle images, use: 

from tools4yolo import augment_needle_images

augment_needle_images(
    folder="c:\\pics2",
    outputfolder="c:\\pics3",
    width=640,
    height=640,
)

# Make sure that there is no background after calling augment_needle_images

Generating the configuration file

import os
from tools4yolo import generate_ini_file

allbands = [
    r"C:\pics3\metallica",
    r"C:\pics3\acdc",
    r"C:\pics3\aerosmith",
    r"C:\pics3\anthrax",
    r"C:\pics3\black_sabbath",
    r"C:\pics3\iron_maiden",
    r"C:\pics3\judas_priest",
    r"C:\pics3\kiss",
    r"C:\pics3\krokus",
    r"C:\pics3\led_zeppelin",
    r"C:\pics3\manowar",
    r"C:\pics3\metalchurch",
    r"C:\pics3\misfits",
    r"C:\pics3\motorhead",
    r"C:\pics3\ozzy",
    r"C:\pics3\pantera",
    r"C:\pics3\saint_vitus",
    r"C:\pics3\saxon",
    r"C:\pics3\scorpions",
    r"C:\pics3\slayer",
    r"C:\pics3\whitesnake",
    r"C:\pics3\accept",
]
allclasses = []
backgroundfolder = r"C:\Backgrounds"
personal_yaml_file = "bandlogos.yaml" # name it however you want 
outputfolder = "c:\\bandlogos1\\pics2"  # folder will be created if it does not exist
outputinifile = 'c:\\bandlogos1\\training2.ini' # file will be created if it does not exist
os.makedirs(outputfolder,exist_ok=True)
for i, k in enumerate(allbands):
    allclasses.append(
        {
            "classnumber": i,
            "classname": k.split(os.sep)[-1],
            "random_background_folder": backgroundfolder,
            "class_pictures": k,
            "personal_yaml_file": personal_yaml_file,
            "outputfolder": outputfolder,
            "howmany": 1000,
            "background_qty": 100,
            "processes": 2,
            "image_size_width": 640,
            "image_size_height": 640,
            "needle_size_percentage_min": 0.20,
            "needle_size_percentage_max": 0.9,
            "blur_image_kernel_min": 1,
            "blur_image_kernel_max": 5,
            "blur_image_frequency": 10,
            "sharpen_image_kernel_min": 1,
            "sharpen_image_kernel_max": 6,
            "sharpen_image_frequency": 10,
            "distorted_resizing_add_min_x": 0.01,
            "distorted_resizing_add_max_x": 0.15,
            "distorted_resizing_add_min_y": 0.01,
            "distorted_resizing_add_max_y": 0.15,
            "distorted_resizing_frequency": 10,
            "blur_borders_min_x0": 0.01,
            "blur_borders_max_x0": 0.1,
            "blur_borders_min_x1": 0.01,
            "blur_borders_max_x1": 0.1,
            "blur_borders_min_y0": 0.01,
            "blur_borders_max_y0": 0.1,
            "blur_borders_min_y1": 0.01,
            "blur_borders_max_y1": 0.1,
            "blur_borders_kernel_min": 1,
            "blur_borders_kernel_max": 6,
            "blur_borders_frequency": 30,
            "pixelborder_min": 1,
            "pixelborder_max": 20,
            "pixelborder_loop_min": 1,
            "pixelborder_loop_max": 2,
            "pixelborder_frequency": 30,
            "perspective_distortion_min_x": 0.01,
            "perspective_distortion_max_x": 0.15,
            "perspective_distortion_min_y": 0.01,
            "perspective_distortion_max_y": 0.15,
            "perspective_distortion_percentage": 15,
            "transparency_distortion_min": 140,
            "transparency_distortion_max": 255,
            "transparency_distortion_frequency": 40,
            "canny_edge_blur_thresh_lower_min": 10,
            "canny_edge_blur_thresh_lower_max": 20,
            "canny_edge_blur_thresh_upper_min": 80,
            "canny_edge_blur_thresh_upper_max": 90,
            "canny_edge_blur_kernel_min": 1,
            "canny_edge_blur_kernel_max": 6,
            "canny_edge_blur_frequency": 10,
            "random_crop_min_x": 0.01,
            "random_crop_max_x": 0.10,
            "random_crop_min_y": 0.01,
            "random_crop_max_y": 0.10,
            "random_crop_frequency": 30,
            "hue_shift_min": 1,
            "hue_shift_max": 180,
            "hue_shift_frequency": 90,
            "change_contrast_min": 0.8,
            "change_contrast_max": 1.2,
            "change_contrast_frequency": 30,
            "rotate_image_min": 2,
            "rotate_image_max": 359,
            "rotate_image_frequency": 90,
            "colors_to_change_percentage_max": 75,
            "colors_to_change_percentage_min": 1,
            "colors_to_change_frequency": 90,
            "colors_to_change_r_min": 5,
            "colors_to_change_r_max": 250,
            "colors_to_change_g_min": 5,
            "colors_to_change_g_max": 250,
            "colors_to_change_b_min": 5,
            "colors_to_change_b_max": 250,
            "flip_image_left_right_frequency": 2,
            "flip_image_up_down_frequency": 2,
            "verbose": True,
            "bloom_kernel_min": 1,
            "bloom_kernel_max": 25,
            "bloom_sigmaX_min": 140,
            "bloom_sigmaX_max": 240,
            "bloom_intensity_min": 4.5,
            "bloom_intensity_max": 20.5,
            "bloom_frequency": 30,
            "fish_distortion_min1": 0.01,
            "fish_distortion_max1": 0.4,
            "fish_distortion_min2": 0.01,
            "fish_distortion_max2": 0.4,
            "fish_distortion_min3": 0.01,
            "fish_distortion_max3": 0.4,
            "fish_distortion_min4": 0.01,
            "fish_distortion_max4": 0.03,
            "fish_divider_1_min": 1,
            "fish_divider_1_max": 2,
            "fish_divider_2_min": 1,
            "fish_divider_2_max": 4,
            "fish_divider_3_min": 1,
            "fish_divider_3_max": 2,
            "fish_divider_4_min": 2,
            "fish_divider_4_max": 4,
            "fish_border_add": 0.1,
            "fish_frequency": 50,
        }
    )
inifile=generate_ini_file(allclasses)
print(inifile)

with open(outputinifile,mode='w',encoding='utf-8') as f:
    f.write(inifile)


# Example of a generated config file.

[class0]
classnumber:0
classname:metallica
random_background_folder:C:\Backgrounds
class_pictures:C:\pics2\metallica
personal_yaml_file:bandlogos.yaml
outputfolder:c:\bandlogos1\pics
howmany:1400
background_qty:100
processes:4
image_size_width:640
image_size_height:640
needle_size_percentage_min:0.2
needle_size_percentage_max:0.9
blur_image_kernel_min:1
blur_image_kernel_max:5
blur_image_frequency:10
sharpen_image_kernel_min:1
sharpen_image_kernel_max:6
sharpen_image_frequency:10
distorted_resizing_add_min_x:0.01
distorted_resizing_add_max_x:0.15
distorted_resizing_add_min_y:0.01
distorted_resizing_add_max_y:0.15
distorted_resizing_frequency:10
blur_borders_min_x0:0.01
blur_borders_max_x0:0.1
blur_borders_min_x1:0.01
blur_borders_max_x1:0.1
blur_borders_min_y0:0.01
blur_borders_max_y0:0.1
blur_borders_min_y1:0.01
blur_borders_max_y1:0.1
blur_borders_kernel_min:1
blur_borders_kernel_max:6
blur_borders_frequency:30
pixelborder_min:1
pixelborder_max:20
pixelborder_loop_min:1
pixelborder_loop_max:2
pixelborder_frequency:30
perspective_distortion_min_x:0.01
perspective_distortion_max_x:0.15
perspective_distortion_min_y:0.01
perspective_distortion_max_y:0.15
perspective_distortion_percentage:15
transparency_distortion_min:140
transparency_distortion_max:255
transparency_distortion_frequency:40
canny_edge_blur_thresh_lower_min:10
canny_edge_blur_thresh_lower_max:20
canny_edge_blur_thresh_upper_min:80
canny_edge_blur_thresh_upper_max:90
canny_edge_blur_kernel_min:1
canny_edge_blur_kernel_max:6
canny_edge_blur_frequency:10
random_crop_min_x:0.01
random_crop_max_x:0.1
random_crop_min_y:0.01
random_crop_max_y:0.1
random_crop_frequency:30
hue_shift_min:1
hue_shift_max:180
hue_shift_frequency:90
change_contrast_min:0.8
change_contrast_max:1.2
change_contrast_frequency:30
rotate_image_min:2
rotate_image_max:359
rotate_image_frequency:90
colors_to_change_percentage_max:75
colors_to_change_percentage_min:1
colors_to_change_frequency:90
colors_to_change_r_min:5
colors_to_change_r_max:250
colors_to_change_g_min:5
colors_to_change_g_max:250
colors_to_change_b_min:5
colors_to_change_b_max:250
flip_image_left_right_frequency:2
flip_image_up_down_frequency:2
verbose:True
bloom_kernel_min:1
bloom_kernel_max:25
bloom_sigmaX_min:140
bloom_sigmaX_max:240
bloom_intensity_min:4.5
bloom_intensity_max:20.5
bloom_frequency:30
fish_distortion_min1:0.01
fish_distortion_max1:0.4
fish_distortion_min2:0.01
fish_distortion_max2:0.4
fish_distortion_min3:0.01
fish_distortion_max3:0.4
fish_distortion_min4:0.01
fish_distortion_max4:0.03
fish_divider_1_min:1
fish_divider_1_max:2
fish_divider_2_min:1
fish_divider_2_max:4
fish_divider_3_min:1
fish_divider_3_max:2
fish_divider_4_min:2
fish_divider_4_max:4
fish_border_add:0.1
fish_frequency:50


[class1]
classnumber:1
classname:acdc
random_background_folder:C:\Backgrounds
class_pictures:C:\pics2\acdc
personal_yaml_file:bandlogos.yaml
outputfolder:c:\bandlogos1\pics
howmany:1400
background_qty:100
processes:4
image_size_width:640
image_size_height:640
needle_size_percentage_min:0.2
needle_size_percentage_max:0.9
blur_image_kernel_min:1
blur_image_kernel_max:5
blur_image_frequency:10
sharpen_image_kernel_min:1
sharpen_image_kernel_max:6
sharpen_image_frequency:10
distorted_resizing_add_min_x:0.01
distorted_resizing_add_max_x:0.15
distorted_resizing_add_min_y:0.01
distorted_resizing_add_max_y:0.15
distorted_resizing_frequency:10
blur_borders_min_x0:0.01
blur_borders_max_x0:0.1
blur_borders_min_x1:0.01
blur_borders_max_x1:0.1
blur_borders_min_y0:0.01
blur_borders_max_y0:0.1
blur_borders_min_y1:0.01
blur_borders_max_y1:0.1
blur_borders_kernel_min:1
blur_borders_kernel_max:6
blur_borders_frequency:30
pixelborder_min:1
pixelborder_max:20
pixelborder_loop_min:1
pixelborder_loop_max:2
pixelborder_frequency:30
perspective_distortion_min_x:0.01
perspective_distortion_max_x:0.15
perspective_distortion_min_y:0.01
perspective_distortion_max_y:0.15
perspective_distortion_percentage:15
transparency_distortion_min:140
transparency_distortion_max:255
transparency_distortion_frequency:40
canny_edge_blur_thresh_lower_min:10
canny_edge_blur_thresh_lower_max:20
canny_edge_blur_thresh_upper_min:80
canny_edge_blur_thresh_upper_max:90
canny_edge_blur_kernel_min:1
canny_edge_blur_kernel_max:6
canny_edge_blur_frequency:10
random_crop_min_x:0.01
random_crop_max_x:0.1
random_crop_min_y:0.01
random_crop_max_y:0.1
random_crop_frequency:30
hue_shift_min:1
hue_shift_max:180
hue_shift_frequency:90
change_contrast_min:0.8
change_contrast_max:1.2
change_contrast_frequency:30
rotate_image_min:2
rotate_image_max:359
rotate_image_frequency:90
colors_to_change_percentage_max:75
colors_to_change_percentage_min:1
colors_to_change_frequency:90
colors_to_change_r_min:5
colors_to_change_r_max:250
colors_to_change_g_min:5
colors_to_change_g_max:250
colors_to_change_b_min:5
colors_to_change_b_max:250
flip_image_left_right_frequency:2
flip_image_up_down_frequency:2
verbose:True
bloom_kernel_min:1
bloom_kernel_max:25
bloom_sigmaX_min:140
bloom_sigmaX_max:240
bloom_intensity_min:4.5
bloom_intensity_max:20.5
bloom_frequency:30
fish_distortion_min1:0.01
fish_distortion_max1:0.4
fish_distortion_min2:0.01
fish_distortion_max2:0.4
fish_distortion_min3:0.01
fish_distortion_max3:0.4
fish_distortion_min4:0.01
fish_distortion_max4:0.03
fish_divider_1_min:1
fish_divider_1_max:2
fish_divider_2_min:1
fish_divider_2_max:4
fish_divider_3_min:1
fish_divider_3_max:2
fish_divider_4_min:2
fish_divider_4_max:4
fish_border_add:0.1
fish_frequency:50

...

Generating the data set, and training the model

from tools4yolo import start_yolov5_training

if __name__ == "__main__": # necessary - multiprocessing
    start_yolov5_training(

        cfgfile=r"C:\bandlogos1\training2.ini",
        ptfile=r"C:\bandlogos1\best1.pt",
        generate_images=True,
        train_model=True,
        model_file="yolov5m.yaml",
        hypfile="hyp.scratch-low.yaml",
        batch=16,
        epochs=35,
        workers=3,
        save_period=1,
        cache="disk",
    )

Using the trained model

from cv2imshow.cv2imshow import cv2_imshow_multi

from tools4yolo import Yolov5Detect
from fast_ctypes_screenshots import (
    ScreenshotOfOneMonitor,

)
ptfile = [r"C:\bandlogos1\pics1\dataset\splitset\bandlogos\weights\best.pt"]

yv = Yolov5Detect(
    modelfiles=ptfile, repo_or_dir="./yolov5", model="custom", source="local"
)
try:
    with ScreenshotOfOneMonitor(
            monitor=0, ascontiguousarray=False
    ) as screenshots_monitor:
        while True:

            img5 = screenshots_monitor.screenshot_one_monitor()
            li = yv.detect(
                images=[
                    img5
                ],
                confidence_thresh=.4,
                bgr_to_rgb=False,
                draw_output=True,
                #save_folder="c:\\outputfolderyolo3v",
            )
            cv2_imshow_multi(
                title="pic3",
                image=li[0][-1],
                killkeys="ctrl+alt+h",  # switch on/off
            )
except KeyboardInterrupt:
    pass