DualCam dataset is a benchmark traffic light dataset which covers urban and sub-urban areas. It consists of 2250 annotated images of 1920x1080 resolution with 8321 instances.
The train set, test set 1, test set 2, test videos of DualCam traffic light dataset can be downloaded from following google drive links.
- Samples - 15 image pairs (26 MB)
- Train set - 1032 images (479 MB)
- Test set 1 - 335 image pairs (547 MB)
- Test set 2 - 478 image pairs (751 MB)
- Test videos - 28 video pairs (3.63 GB)
The annotations are given in PASCAL VOC XML and YOLO annotation format.
Traffic light class | Train set | Test set | Total |
---|---|---|---|
Green | 1198 | 1251 | 2449 |
Red | 565 | 901 | 1466 |
Green-up | 426 | 495 | 921 |
Empty-count-down | 537 | 225 | 762 |
Count-down | 346 | 396 | 742 |
Yellow | 452 | 246 | 698 |
Empty | 222 | 469 | 691 |
Green-right | 115 | 171 | 286 |
Green-left | 55 | 105 | 160 |
Red-yellow | 66 | 80 | 146 |
.
├── samples
│ ├── images
│ ├── xml
│ └── yolo
├── test_1
│ ├── images
│ ├── xml
│ └── yolo
├── test_2
│ ├── images
│ ├── xml
│ └── yolo
├── test_videos
└── train
├── images
├── xml
└── yolo
We provide 2 visualizers to visualize images with the bounding boxes.
Install
Clone repo and install requirements.txt in a Python>=3.7.0 environment
git clone https://github.com/harinduravin/DualCam.git #clone
cd DualCam
pip install -r requirements.txt # install
To visualize image use following scripts.
- single-frame visualizer to visualize images with bounding boxes.
python3 single_image_visualizer.py
- dual-frame visualizer to visualize image pairs in test set with bounding boxes.
python3 sync_image_visualizer.py
Camera | Imaging sensor | Lens | FoV (Vertical) | FoV (Horizontal) | Frame rate (fps) |
---|---|---|---|---|---|
Narrow-angle camera | Basler daA1920-30uc (S-Mount) |
Evetar Lens M13B0618W F1.8 f6mm 1/3” lens |
34.50 | 480 | 30 |
Wide-angle camera | Basler daA1920-30uc (CS-Mount) |
Theia SY125A/SY125M Lens | 1090 | 1250 | 30 |
Please consider citing our paper, if you find our dataset valuable for your research
@inproceedings{dualcam2023,
author={Jayarathne, Harindu and Samarakoon, Tharindu and Koralege, Hasara and Divisekara, Asitha and Rodrigo, Ranga and Jayasekara, Peshala},
booktitle={2023 International Conference on Machine Learning and Applications (ICMLA)},
title={DualCam: A Novel Benchmark Dataset for Fine-Grained Real-Time Traffic Light Detection},
year={2023},
pages={1778-1783},
doi={10.1109/ICMLA58977.2023.00270}
}