/DualCam

DualCam Traffic Light Dataset created using two synchronous narrow angle and wide angle cameras.

Primary LanguagePython

DualCam Traffic Light Dataset

A video compilation of training set ground truth

video link

Overview

DualCam dataset is a benchmark traffic light dataset which covers urban and sub-urban areas. It consists of 2250 annotated images of 1920x1080 resolution with 8321 instances.

Download

The train set, test set 1, test set 2, test videos of DualCam traffic light dataset can be downloaded from following google drive links.

Annotations

The annotations are given in PASCAL VOC XML and YOLO annotation format.

Statistics

Traffic light class Train set Test set Total
Green 1198 1251 2449
Red 565 901 1466
Green-up 426 495 921
Empty-count-down 537 225 762
Count-down 346 396 742
Yellow 452 246 698
Empty 222 469 691
Green-right 115 171 286
Green-left 55 105 160
Red-yellow 66 80 146

Dataset folder structure

.
├── samples
│   ├── images
│   ├── xml
│   └── yolo
├── test_1
│   ├── images
│   ├── xml
│   └── yolo
├── test_2
│   ├── images
│   ├── xml
│   └── yolo
├── test_videos
└── train
    ├── images
    ├── xml
    └── yolo

Image Visualizers

We provide 2 visualizers to visualize images with the bounding boxes.

Install

Clone repo and install requirements.txt in a Python>=3.7.0 environment

git clone https://github.com/harinduravin/DualCam.git #clone
cd DualCam
pip install -r requirements.txt  # install

To visualize image use following scripts.

  • single-frame visualizer to visualize images with bounding boxes.
python3 single_image_visualizer.py
  • dual-frame visualizer to visualize image pairs in test set with bounding boxes.
python3 sync_image_visualizer.py

Camera details

Camera Imaging sensor Lens FoV (Vertical) FoV (Horizontal) Frame rate (fps)
Narrow-angle camera Basler
daA1920-30uc
(S-Mount)
Evetar Lens
M13B0618W F1.8
f6mm 1/3” lens
34.50 480 30
Wide-angle camera Basler
daA1920-30uc
(CS-Mount)
Theia SY125A/SY125M Lens 1090 1250 30

Please consider citing our paper, if you find our dataset valuable for your research

@inproceedings{dualcam2023,
  author={Jayarathne, Harindu and Samarakoon, Tharindu and Koralege, Hasara and Divisekara, Asitha and Rodrigo, Ranga and Jayasekara, Peshala},
  booktitle={2023 International Conference on Machine Learning and Applications (ICMLA)}, 
  title={DualCam: A Novel Benchmark Dataset for Fine-Grained Real-Time Traffic Light Detection}, 
  year={2023},
  pages={1778-1783},
  doi={10.1109/ICMLA58977.2023.00270}
}