venturia_inaequalis
command for analysis of venturia genome
==========
Scripts used for the analysis of venturia genomes Note - all this work was performed in the directory: /home/groups/harrisonlab/project_files/venturia
The following is a summary of the work presented in this Readme.
The following processes were applied to venturia genomes prior to analysis: Data qc Genome assembly Repeatmasking Gene prediction Functional annotation
Analyses performed on these genomes involved BLAST searching for:
#Building of directory structure
Project directory created for venturia work
ProjectDir=/home/groups/harrisonlab/project_files/venturia
mkdir -p $ProjectDir
cd $ProjectDir
Data was copied into this directory
mkdir -p raw_dna/paired/v.inaequalis/049/F
mkdir -p raw_dna/paired/v.inaequalis/049/R
mkdir -p raw_dna/paired/v.inaequalis/057/F
mkdir -p raw_dna/paired/v.inaequalis/057/R
mkdir -p raw_dna/paired/v.inaequalis/098/F
mkdir -p raw_dna/paired/v.inaequalis/098/R
mkdir -p raw_dna/paired/v.inaequalis/119/F
mkdir -p raw_dna/paired/v.inaequalis/119/R
mkdir -p raw_dna/paired/v.inaequalis/199/F
mkdir -p raw_dna/paired/v.inaequalis/199/R
mkdir -p raw_dna/paired/v.inaequalis/007/F
mkdir -p raw_dna/paired/v.inaequalis/007/R
mkdir -p raw_dna/paired/v.inaequalis/044/F
mkdir -p raw_dna/paired/v.inaequalis/044/R
mkdir -p raw_dna/paired/v.inaequalis/083/F
mkdir -p raw_dna/paired/v.inaequalis/083/R
mkdir -p raw_dna/paired/v.inaequalis/172/F
mkdir -p raw_dna/paired/v.inaequalis/172/R
mkdir -p raw_dna/paired/v.inaequalis/182/F
mkdir -p raw_dna/paired/v.inaequalis/182/R
mkdir -p raw_dna/paired/v.inaequalis/025/F
mkdir -p raw_dna/paired/v.inaequalis/025/R
mkdir -p raw_dna/paired/v.inaequalis/096/F
mkdir -p raw_dna/paired/v.inaequalis/096/R
mkdir -p raw_dna/paired/v.inaequalis/118/F
mkdir -p raw_dna/paired/v.inaequalis/118/R
mkdir -p raw_dna/paired/v.inaequalis/196/F
mkdir -p raw_dna/paired/v.inaequalis/196/R
mkdir -p raw_dna/paired/v.inaequalis/202/F
mkdir -p raw_dna/paired/v.inaequalis/202/R
mkdir -p raw_dna/paired/v.inaequalis/024/F
mkdir -p raw_dna/paired/v.inaequalis/024/R
mkdir -p raw_dna/paired/v.inaequalis/030/F
mkdir -p raw_dna/paired/v.inaequalis/030/R
mkdir -p raw_dna/paired/v.inaequalis/101/F
mkdir -p raw_dna/paired/v.inaequalis/101/R
mkdir -p raw_dna/paired/v.inaequalis/106/F
mkdir -p raw_dna/paired/v.inaequalis/106/R
mkdir -p raw_dna/paired/v.inaequalis/197/F
mkdir -p raw_dna/paired/v.inaequalis/197/R
mkdir -p raw_dna/paired/v.inaequalis/036/F
mkdir -p raw_dna/paired/v.inaequalis/036/R
mkdir -p raw_dna/paired/v.inaequalis/097/F
mkdir -p raw_dna/paired/v.inaequalis/097/R
mkdir -p raw_dna/paired/v.inaequalis/173/F
mkdir -p raw_dna/paired/v.inaequalis/173/R
mkdir -p raw_dna/paired/v.inaequalis/190/F
mkdir -p raw_dna/paired/v.inaequalis/190/R
mkdir -p raw_dna/paired/v.inaequalis/saturn/F
mkdir -p raw_dna/paired/v.inaequalis/saturn/R
#Data qc
programs: fastqc fastq-mcf kmc
Data quality was visualised using fastqc:
for RawData in $(ls raw_dna/paired/*/*/*/*.fastq.gz); do
echo $RawData;
ProgDir=/home/armita/git_repos/emr_repos/tools/seq_tools/dna_qc
qsub $ProgDir/run_fastqc.sh $RawData
done
Trimming was performed on data to trim adapters from sequences and remove poor quality data. This was done with fastq-mcf
Trimming was performed on all isolates:
for StrainPath in $(ls -d raw_dna/paired/*/*);
do
ProgDir=/home/passet/git_repos/tools/seq_tools/rna_qc
IlluminaAdapters=/home/passet/git_repos/tools/seq_tools/ncbi_adapters.fa
ReadsF=$(ls $StrainPath/F/*.fastq*)
ReadsR=$(ls $StrainPath/R/*.fastq*)
echo $ReadsF
echo $ReadsR
qsub $ProgDir/rna_qc_fastq-mcf.sh $ReadsF $ReadsR $IlluminaAdapters DNA
done
Data quality was visualised once again following trimming:
for RawData in $(ls qc_dna/paired/*/*/*/*.fq.gz); do
ProgDir=/home/passet/git_repos/tools/seq_tools/dna_qc
echo $RawData;
qsub $ProgDir/run_fastqc.sh $RawData
done
kmer counting was performed using kmc This allowed estimation of sequencing depth and total genome size
for TrimPath in $(ls -d raw_dna/paired/*/*); do
ProgDir=/home/passet/git_repos/tools/seq_tools/dna_qc
TrimF=$(ls $TrimPath/F/*.fastq*)
TrimR=$(ls $TrimPath/R/*.fastq*)
echo $TrimF
echo $TrimR
qsub $ProgDir/kmc_kmer_counting.sh $TrimF $TrimR
done
mode kmer abundance prior to error correction was reported using the following commands:
for File in $(ls qc_dna/kmc/*/*/*_true_kmer_summary.txt); do
basename $File;
cat $File | grep -e 'abundance' -e 'size'
done
Results of kmer counting (numbers in brackets indicate estimated kmer coverage from histogram) ''' The estimated genome size is: 64158121 024_true_kmer_summary.txt The mode kmer abundance is: 30 The estimated genome size is: 59324376 025_true_kmer_summary.txt The mode kmer abundance is: 29 The estimated genome size is: 69351314 030_true_kmer_summary.txt The mode kmer abundance is: 24 The estimated genome size is: 64520872 036_true_kmer_summary.txt The mode kmer abundance is: 5 The estimated genome size is: 35589866 044_true_kmer_summary.txt The mode kmer abundance is: 5 (30) The estimated genome size is: 452258529 049_true_kmer_summary.txt The mode kmer abundance is: 34 The estimated genome size is: 56424510 057_true_kmer_summary.txt The mode kmer abundance is: 5 The estimated genome size is: 265385077 083_true_kmer_summary.txt The mode kmer abundance is: 25 The estimated genome size is: 61502122 096_true_kmer_summary.txt The mode kmer abundance is: 5 (20) The estimated genome size is: 348646667 097_true_kmer_summary.txt The mode kmer abundance is: 22 The estimated genome size is: 63868207 098_true_kmer_summary.txt The mode kmer abundance is: 5 (40) The estimated genome size is: 495964379 101_true_kmer_summary.txt The mode kmer abundance is: 33 The estimated genome size is: 57884967 106_true_kmer_summary.txt The mode kmer abundance is: 20 The estimated genome size is: 63717914 118_true_kmer_summary.txt The mode kmer abundance is: 7 The estimated genome size is: 262481354 119_true_kmer_summary.txt The mode kmer abundance is: 33 The estimated genome size is: 58479942 172_true_kmer_summary.txt The mode kmer abundance is: 24 The estimated genome size is: 63294175 173_true_kmer_summary.txt The mode kmer abundance is: 5 (35) The estimated genome size is: 437136955 182_true_kmer_summary.txt The mode kmer abundance is: 32 The estimated genome size is: 62170328 190_true_kmer_summary.txt The mode kmer abundance is: 5 (20) The estimated genome size is: 309277674 196_true_kmer_summary.txt The mode kmer abundance is: 28 The estimated genome size is: 59732382 197_true_kmer_summary.txt The mode kmer abundance is: 28 The estimated genome size is: 61229552 199_true_kmer_summary.txt The mode kmer abundance is: 5 (40) The estimated genome size is: 520820360 202_true_kmer_summary.txt The mode kmer abundance is: 32 The estimated genome size is: 58471759 saturn_true_kmer_summary.txt The mode kmer abundance is: 5 (40) The estimated genome size is: 471789289 '''
#Assembly
Assembly was performed with:
- Spades
Spades Assembly
Isolates with mode kmer abundance 20 or above (i.e all except 036, 057 and 118)
for StrainPath in $(ls -d qc_dna/paired/*/* | grep -v -w -e "036" -e "057" -e "118"); do
Jobs=$(qstat | grep 'submit_S' | grep 'qw' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'submit_S' | grep 'qw' | wc -l)
done
ProgDir=/home/passet/git_repos/tools/seq_tools/assemblers/spades
Strain=$(echo $StrainPath | rev | cut -f1 -d '/' | rev)
Organism=$(echo $StrainPath | rev | cut -f2 -d '/' | rev)
F_Read=$(ls $StrainPath/F/*.fq.gz)
R_Read=$(ls $StrainPath/R/*.fq.gz)
OutDir=assembly/spades/$Organism/$Strain
echo $F_Read
echo $R_Read
qsub $ProgDir/submit_SPAdes_HiMem.sh $F_Read $R_Read $OutDir correct 15
done
Spades assembly with the 3 isolates with mode kmer below 10
for StrainPath in $(ls -d qc_dna/paired/*/* | grep -w -e "036" -e "057" -e "118"); do
Jobs=$(qstat | grep 'submit_S' | grep 'qw' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'submit_S' | grep 'qw' | wc -l)
done
ProgDir=/home/passet/git_repos/tools/seq_tools/assemblers/spades
Strain=$(echo $StrainPath | rev | cut -f1 -d '/' | rev)
Organism=$(echo $StrainPath | rev | cut -f2 -d '/' | rev)
F_Read=$(ls $StrainPath/F/*.fq.gz)
R_Read=$(ls $StrainPath/R/*.fq.gz)
OutDir=assembly/spades/$Organism/$Strain
echo $F_Read
echo $R_Read
qsub $ProgDir/submit_SPAdes_HiMem.sh $F_Read $R_Read $OutDir correct 10
done
Quast
ProgDir=/home/passet/git_repos/tools/seq_tools/assemblers/assembly_qc/quast
for Assembly in $(ls assembly/spades/*/*/filtered_contigs/contigs_min_500bp.fasta); do
Strain=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Assembly | rev | cut -f4 -d '/' | rev)
OutDir=assembly/spades/$Organism/$Strain/filtered_contigs
qsub $ProgDir/sub_quast.sh $Assembly $OutDir
done
Contigs were renamed in accordance with ncbi recomendations.
ProgDir=~/git_repos/tools/seq_tools/assemblers/assembly_qc/remove_contaminants
touch tmp.csv
for Assembly in $(ls assembly/spades/*/*/filtered_contigs/contigs_min_500bp.fasta); do
Strain=$(echo $Assembly | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Assembly | rev | cut -f4 -d '/' | rev)
OutDir=assembly/spades/$Organism/$Strain/filtered_contigs
$ProgDir/remove_contaminants.py --inp $Assembly --out $OutDir/contigs_min_500bp_renamed.fasta --coord_file tmp.csv
done
rm tmp.csv
Summary of assemblies
for File in $(ls assembly/spades/*/*/filtered_contigs/report.tsv); do
Organism=$(echo $File | rev |cut -f4 -d '/' | rev)
Strain=$(echo $File | rev |cut -f3 -d '/' | rev)
echo $Organism > tmp_"$Strain".txt
echo $Strain >> tmp_"$Strain".txt
cat $File | tail -n+2 | cut -f2 >> tmp_"$Strain".txt
done
paste tmp*.txt > assembly/spades/assembly_summary.tsv
rm tmp*.txt
Repeatmasking
Repeat masking was performed and used the following programs: Repeatmasker Repeatmodeler
The best assemblies were used to perform repeatmasking
ProgDir=/home/passet/git_repos/tools/seq_tools/repeat_masking
for BestAss in $(ls assembly/spades/*/*/*/contigs_min_500bp_renamed.fasta); do
qsub $ProgDir/rep_modeling.sh $BestAss
qsub $ProgDir/transposonPSI.sh $BestAss
done
The number of bases masked by transposonPSI and Repeatmasker were summarised using the following commands:
for RepDir in $(ls -d repeat_masked/v.*/*/*); do
Strain=$(echo $RepDir | rev | cut -f2 -d '/' | rev)
Organism=$(echo $RepDir | rev | cut -f3 -d '/' | rev)
RepMaskGff=$(ls $RepDir/*_contigs_hardmasked.gff)
TransPSIGff=$(ls $RepDir/*_contigs_unmasked.fa.TPSI.allHits)
printf "$Organism\t$Strain\n"
printf "The number of bases masked by RepeatMasker:\t"
sortBed -i $RepMaskGff | bedtools merge | awk -F'\t' 'BEGIN{SUM=0}{ SUM+=$3-$2 }END{print SUM}'
printf "The number of bases masked by TransposonPSI:\t"
sortBed -i $TransPSIGff | bedtools merge | awk -F'\t' 'BEGIN{SUM=0}{ SUM+=$3-$2 }END{print SUM}'
printf "The total number of masked bases are:\t"
cat $RepMaskGff $TransPSIGff | sortBed | bedtools merge | awk -F'\t' 'BEGIN{SUM=0}{ SUM+=$3-$2 }END{print SUM}'
]echo
]done
Results of bases masked by repeatmasker
v.inaequalis 007
The number of bases masked by RepeatMasker: 34407509
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 34407509
v.inaequalis 024
The number of bases masked by RepeatMasker: 33510544
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 33510544
v.inaequalis 025
The number of bases masked by RepeatMasker: 34645619
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 34645619
v.inaequalis 030
The number of bases masked by RepeatMasker: 33066245
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 33066245
v.inaequalis 036
The number of bases masked by RepeatMasker: 71808
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 71808
v.inaequalis 044
The number of bases masked by RepeatMasker: 33705055
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 33705055
v.inaequalis 049
The number of bases masked by RepeatMasker: 31089941
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 31089941
v.inaequalis 057
The number of bases masked by RepeatMasker: 7009434
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 7009434
v.inaequalis 083
The number of bases masked by RepeatMasker: 30796550
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 30796550
v.inaequalis 096
The number of bases masked by RepeatMasker: 33861179
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 33861179
v.inaequalis 097
The number of bases masked by RepeatMasker: 33777696
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 33777696
v.inaequalis 098
The number of bases masked by RepeatMasker: 32129773
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 32129773
v.inaequalis 101
The number of bases masked by RepeatMasker: 30249028
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 30249028
v.inaequalis 106
The number of bases masked by RepeatMasker: 29372196
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 29372196
v.inaequalis 118
The number of bases masked by RepeatMasker: 9267255
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 9267255
v.inaequalis 119
The number of bases masked by RepeatMasker: 33887998
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 33887998
v.inaequalis 172
The number of bases masked by RepeatMasker: 32246642
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 32246642
v.inaequalis 173
The number of bases masked by RepeatMasker: 29861271
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 29861271
v.inaequalis 182
The number of bases masked by RepeatMasker: 33169962
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 33169962
v.inaequalis 190
The number of bases masked by RepeatMasker: 0
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 0
v.inaequalis 196
The number of bases masked by RepeatMasker: 31586869
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 31586869
v.inaequalis 197
The number of bases masked by RepeatMasker: 31393780
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 31393780
v.inaequalis 199
The number of bases masked by RepeatMasker: 33016953
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 33016953
v.inaequalis 202
The number of bases masked by RepeatMasker: 31903088
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 31903088
v.inaequalis saturn
The number of bases masked by RepeatMasker: 31550846
The number of bases masked by TransposonPSI: 0
The total number of masked bases are: 31550846
'''
# RNA-seq data download
Dowloaded Thakur et al RNA-seq data from NCBI
prefetch -o raw_rna/unpaired/v.inaequalis SRR2164202
fastq-dump -O raw_rna/unpaired/v.inaequalis SRR2164202
prefetch -o raw_rna/unpaired/v.inaequalis SRR2164317
fastq-dump -O raw_rna/unpaired/v.inaequalis SRR2164317
prefetch -o raw_rna/unpaired/v.inaequalis SRR2164320
fastq-dump -O raw_rna/unpaired/v.inaequalis SRR2164320
prefetch -o raw_rna/paired/v.inaequalis SRR2164233
fastq-dump -O raw_rna/paired/v.inaequalis SRR2164233
prefetch -o raw_rna/paired/v.inaequalis SRR2164324
fastq-dump -O raw_rna/paired/v.inaequalis SRR2164324
prefetch -o raw_rna/paired/v.inaequalis SRR2164325
fastq-dump -O raw_rna/paired/v.inaequalis SRR2164325
# Gene Prediction
Gene prediction followed three steps:
Pre-gene prediction
- Quality of genome assemblies were assessed using Cegma to see how many core eukaryotic genes can be identified.
Gene model training
- Gene models were trained using assembled RNAseq data as part of the Braker1 pipeline
Gene prediction
- Gene models were used to predict genes in genomes as part of the the Braker1 pipeline. This used RNAseq data as hints for gene models.
# Pre-gene prediction
Quality of genome assemblies was assessed by looking for the gene space in the assemblies.
```bash
ProgDir=/home/passet/git_repos/tools/gene_prediction/cegma
cd /home/groups/harrisonlab/project_files/venturia
for Genome in $(ls repeat_masked/v.*/*/*/*_contigs_unmasked.fa); do
echo $Genome;
qsub $ProgDir/sub_cegma.sh $Genome dna;
done
Outputs were summarised using the commands:
for File in $(ls gene_pred/cegma/v*/*/*_dna_cegma.completeness_report); do
Strain=$(echo $File | rev | cut -f2 -d '/' | rev);
Species=$(echo $File | rev | cut -f3 -d '/' | rev);
printf "$Species\t$Strain\n";
cat $File | head -n18 | tail -n+4;printf "\n";
done > gene_pred/cegma/cegma_results_dna_summary.txt
less gene_pred/cegma/cegma_results_dna_summary.txt
#Gene prediction
Gene prediction was performed for V. inaequalis genomes. Two gene prediction approaches were used:
Gene prediction using Braker1 Prediction of all putative ORFs in the genome using the ORF finder (atg.pl) approach.
Gene prediction 1 - Braker1 gene model training and prediction
Gene prediction was performed using Braker1.
First, RNAseq data was aligned to V. inaequalis genomes.
- qc of RNA seq data is detailed below:
Perform qc of RNAseq timecourse data
for File in $( ls raw_rna/*/*/*/*/*.fastq); do
echo $File
IlluminaAdapters=/home/armita/git_repos/emr_repos/tools/seq_tools/ncbi_adapters.fa
ProgDir=/home/passet/git_repos/tools/seq_tools/rna_qc
qsub $ProgDir/rna_qc_fastq-mcf_unpaired.sh $File $IlluminaAdapters RNA
done
Data quality was visualised using fastqc:
for RawData in $(ls qc_rna/*/v.inaequalis/*/*/*.fq.gz); do
ProgDir=/home/passet/git_repos/tools/seq_tools/dna_qc
echo $RawData;
qsub $ProgDir/run_fastqc.sh $RawData
done
Aligning
Insert sizes of the RNA seq library were unknown until a draft alignment could be made. To do this tophat and cufflinks were run, aligning the reads against a single genome. The fragment length and stdev were printed to stdout while cufflinks was running.
for Assembly in $(ls repeat_masked/*/*/*/*_contigs_unmasked.fa | grep -w '007'); do
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
Paired=$(echo $Assembly | rev | cut -d '/' -f5 | rev)
echo "$Organism - $Strain"
for rna_file in $(ls qc_rna/*/*/*/*/*.gz | grep -w 'paired'); do
Timepoint=$(echo $rna_file | rev | cut -f3 -d '/' | rev)
echo "$Timepoint"
OutDir=alignment/$Paired/$Organism/$Strain/$Timepoint
ProgDir=/home/passet/git_repos/tools/seq_tools/RNAseq
qsub $ProgDir/tophat_alignment_unpaired.sh $Assembly $rna_file $OutDir
done
done
Alignments were concatenated prior to running cufflinks: Cufflinks was run to produce the fragment length and stdev statistics:
for Assembly in $(ls repeat_masked/*/*/*/*_contigs_softmasked.fa | grep -w '007'); do
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
mkdir -p alignment/repeat_masked/$Organism/$Strain/concatenated_prelim
AcceptedHits=alignment/repeat_masked/$Organism/$Strain/concatenated_prelim/concatenated.bam
samtools merge -f $AcceptedHits \
alignment/repeat_masked/$Organism/$Strain/V0/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V2/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V5/accepted_hits.bam
OutDir=gene_pred/cufflinks/$Organism/$Strain/concatenated_prelim
mkdir -p $OutDir
cufflinks -o $OutDir/cufflinks -p 8 --max-intron-length 4000 $AcceptedHits 2>&1 | tee $OutDir/cufflinks/cufflinks.log
done
Output from stdout included:
> Processed 46895 loci. [*************************] 100%
> Map Properties:
> Normalized Map Mass: 11055132.29
> Raw Map Mass: 11055132.29
> Fragment Length Distribution: Truncated Gaussian (default)
> Default Mean: 200
> Default Std Dev: 80
[17:10:50] Assembling transcripts and estimating abundances.
> Processed 46920 loci. [*************************] 100%
The Estimated Mean: 200 allowed calculation of of the mean insert gap to be -88 bp 200-(144*2) where 144 was the mean read length. This was provided to tophat on a second run (as the -r option) along with the fragment length stdev to increase the accuracy of mapping.
Then RNaseq data was aligned to each genome assembly:
InsertGap='-88'
InsertStdDev='80'
for Assembly in $(ls repeat_masked/*/*/*/*_contigs_unmasked.fa); do
Jobs=$(qstat | grep 'tophat' | grep 'qw' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'tophat' | grep 'qw' | wc -l)
done
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
Paired=$(echo $Assembly | rev | cut -d '/' -f5 | rev)
echo "$Organism - $Strain"
for rna_file in $(ls qc_rna/*/*/*/*/*.gz | grep -w 'paired'); do
Timepoint=$(echo $rna_file | rev | cut -f3 -d '/' | rev)
echo "$Timepoint"
OutDir=alignment/$Paired/$Organism/$Strain/"$Timepoint"_paired
ProgDir=/home/passet/git_repos/tools/seq_tools/RNAseq
qsub $ProgDir/tophat_alignment_interlevered.sh $Assembly $rna_file $OutDir $InsertGap $InsertStdDev
done
for rna_file in $(ls qc_rna/*/*/*/*/*.gz | grep -w 'unpaired'); do
Timepoint=$(echo $rna_file | rev | cut -f3 -d '/' | rev)
echo "$Timepoint"
OutDir=alignment/$Paired/$Organism/$Strain/"$Timepoint"_unpaired
ProgDir=/home/passet/git_repos/tools/seq_tools/RNAseq
qsub $ProgDir/tophat_alignment_unpaired.sh $Assembly $rna_file $OutDir
done
done
Braker prediction
Before braker predictiction was performed, I double checked that I had the genemark key in my user area and copied it over from the genemark install directory:
ls ~/.gm_key
cp /home/armita/prog/genemark/gm_key_64 ~/.gm_key
Checked with 1 isolate genome first
for Assembly in $(ls repeat_masked/*/*/*/*_contigs_softmasked.fa | grep "024"); do
Jobs=$(qstat | grep 'sub_br' | grep 'qw' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'sub_br' | grep 'qw' | wc -l)
done
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
mkdir -p alignment/repeat_masked/$Organism/$Strain/concatenated
samtools merge -f alignment/repeat_masked/$Organism/$Strain/concatenated/concatenated.bam \
alignment/repeat_masked/$Organism/$Strain/V0_unpaired/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V2_unpaired/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V5_unpaired/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V0_paired/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V2_paired/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V5_paired/accepted_hits.bam
OutDir=gene_pred/braker/$Organism/"$Strain"_braker_new
AcceptedHits=alignment/repeat_masked/$Organism/$Strain/concatenated/concatenated.bam
GeneModelName="$Organism"_"$Strain"_braker_new
rm -r /home/armita/prog/augustus-3.1/config/species/"$Organism"_"$Strain"_braker_new
ProgDir=/home/passet/git_repos/tools/gene_prediction/braker1
qsub $ProgDir/sub_braker_fungi.sh $Assembly $OutDir $AcceptedHits $GeneModelName
done
Ran remaining genomes
for Assembly in $(ls repeat_masked/*/*/*/*_contigs_softmasked.fa | grep -v "024"); do
Jobs=$(qstat | grep 'sub_br' | grep 'qw' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'sub_br' | grep 'qw' | wc -l)
done
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
mkdir -p alignment/repeat_masked/$Organism/$Strain/concatenated
samtools merge -f alignment/repeat_masked/$Organism/$Strain/concatenated/concatenated.bam \
alignment/repeat_masked/$Organism/$Strain/V0_unpaired/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V2_unpaired/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V5_unpaired/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V0_paired/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V2_paired/accepted_hits.bam \
alignment/repeat_masked/$Organism/$Strain/V5_paired/accepted_hits.bam
OutDir=gene_pred/braker/$Organism/"$Strain"_braker_new
AcceptedHits=alignment/repeat_masked/$Organism/$Strain/concatenated/concatenated.bam
GeneModelName="$Organism"_"$Strain"_braker_new
rm -r /home/armita/prog/augustus-3.1/config/species/"$Organism"_"$Strain"_braker_new
ProgDir=/home/passet/git_repos/tools/gene_prediction/braker1
qsub $ProgDir/sub_braker_fungi.sh $Assembly $OutDir $AcceptedHits $GeneModelName
done
Fasta and gff files were extracted from Braker1 output.
for File in $(ls gene_pred/braker/v.*/*_braker_new/*/augustus.gff); do
getAnnoFasta.pl $File
OutDir=$(dirname $File)
echo "##gff-version 3" > $OutDir/augustus_extracted.gff
cat $File | grep -v '#' >> $OutDir/augustus_extracted.gff
done
Supplimenting Braker gene models with CodingQuary genes
Additional genes were added to Braker gene predictions, using CodingQuary in pathogen mode to predict additional regions.
Fistly, aligned RNAseq data was assembled into transcripts using Cufflinks.
Note - cufflinks doesn't always predict direction of a transcript and therefore features can not be restricted by strand when they are intersected.
for Assembly in $(ls repeat_masked/*/*/*/*_contigs_unmasked.fa); do
Jobs=$(qstat | grep 'sub_cu' | grep 'qw' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'sub_cu' | grep 'qw' | wc -l)
done
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
OutDir=gene_pred/cufflinks/$Organism/$Strain/concatenated
mkdir -p $OutDir
AcceptedHits=alignment/repeat_masked/$Organism/$Strain/concatenated/concatenated.bam
ProgDir=/home/passet/git_repos/tools/seq_tools/RNAseq
qsub $ProgDir/sub_cufflinks.sh $AcceptedHits $OutDir
done
Secondly, genes were predicted using CodingQuary:
for Assembly in $(ls repeat_masked/*/*/*/*_contigs_softmasked.fa); do
Jobs=$(qstat | grep 'sub_Co' | grep 'qw' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'sub_Co' | grep 'qw' | wc -l)
done
Strain=$(echo $Assembly| rev | cut -d '/' -f3 | rev)
Organism=$(echo $Assembly | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
OutDir=gene_pred/codingquary/$Organism/$Strain
CufflinksGTF=gene_pred/cufflinks/$Organism/$Strain/concatenated/transcripts.gtf
ProgDir=/home/passet/git_repos/tools/gene_prediction/codingquary
qsub $ProgDir/sub_CodingQuary.sh $Assembly $CufflinksGTF $OutDir
done
Then, additional transcripts were added to Braker gene models, when CodingQuary genes were predicted in regions of the genome, not containing Braker gene models:
for BrakerGff in $(ls gene_pred/braker/v.*/*_braker_new/*/augustus.gff3); do
Strain=$(echo $BrakerGff| rev | cut -d '/' -f3 | rev | sed 's/_braker_new//g')
Organism=$(echo $BrakerGff | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
# BrakerGff=gene_pred/braker/$Organism/$Strain/v.inaequalis_*/augustus_extracted.gff
Assembly=$(ls repeat_masked/$Organism/$Strain/*/"$Strain"_contigs_softmasked.fa)
CodingQuaryGff=gene_pred/codingquary/$Organism/$Strain/out/PredictedPass.gff3
PGNGff=gene_pred/codingquary/$Organism/$Strain/out/PGN_predictedPass.gff3
AddDir=gene_pred/codingquary/$Organism/$Strain/additional
FinalDir=gene_pred/codingquary/$Organism/$Strain/final
AddGenesList=$AddDir/additional_genes.txt
AddGenesGff=$AddDir/additional_genes.gff
FinalGff=$AddDir/combined_genes.gff
mkdir -p $AddDir
mkdir -p $FinalDir
bedtools intersect -v -a $CodingQuaryGff -b $BrakerGff | grep 'gene'| cut -f2 -d'=' | cut -f1 -d';' > $AddGenesList
bedtools intersect -v -a $PGNGff -b $BrakerGff | grep 'gene'| cut -f2 -d'=' | cut -f1 -d';' >> $AddGenesList
ProgDir=/home/passet/git_repos/tools/seq_tools/feature_annotation
$ProgDir/gene_list_to_gff.pl $AddGenesList $CodingQuaryGff CodingQuarry_v2.0 ID CodingQuary > $AddGenesGff
$ProgDir/gene_list_to_gff.pl $AddGenesList $PGNGff PGNCodingQuarry_v2.0 ID CodingQuary >> $AddGenesGff
ProgDir=/home/passet/git_repos/tools/gene_prediction/codingquary
$ProgDir/add_CodingQuary_features.pl $AddGenesGff $Assembly > $FinalDir/final_genes_CodingQuary.gff3
$ProgDir/gff2fasta.pl $Assembly $FinalDir/final_genes_CodingQuary.gff3 $FinalDir/final_genes_CodingQuary
cp $BrakerGff $FinalDir/final_genes_Braker.gff3
$ProgDir/gff2fasta.pl $Assembly $FinalDir/final_genes_Braker.gff3 $FinalDir/final_genes_Braker
cat $FinalDir/final_genes_Braker.pep.fasta $FinalDir/final_genes_CodingQuary.pep.fasta | sed -r 's/\*/X/g' > $FinalDir/final_genes_combined.pep.fasta
cat $FinalDir/final_genes_Braker.cdna.fasta $FinalDir/final_genes_CodingQuary.cdna.fasta > $FinalDir/final_genes_combined.cdna.fasta
cat $FinalDir/final_genes_Braker.gene.fasta $FinalDir/final_genes_CodingQuary.gene.fasta > $FinalDir/final_genes_combined.gene.fasta
cat $FinalDir/final_genes_Braker.upstream3000.fasta $FinalDir/final_genes_CodingQuary.upstream3000.fasta > $FinalDir/final_genes_combined.upstream3000.fasta
GffBraker=$FinalDir/final_genes_CodingQuary.gff3
GffQuary=$FinalDir/final_genes_Braker.gff3
GffAppended=$FinalDir/final_genes_appended.gff3
cat $GffBraker $GffQuary > $GffAppended
done
The final number of genes per isolate was observed using:
for DirPath in $(ls -d gene_pred/codingquary/v.*/*/final); do
echo $DirPath;
cat $DirPath/final_genes_Braker.pep.fasta | grep '>' | wc -l;
cat $DirPath/final_genes_CodingQuary.pep.fasta | grep '>' | wc -l;
cat $DirPath/final_genes_combined.pep.fasta | grep '>' | wc -l;
echo "";
done
Output:
gene_pred/codingquary/v.inaequalis/007/final 12019 1409 13428
gene_pred/codingquary/v.inaequalis/024/final 12073 1245 13318
gene_pred/codingquary/v.inaequalis/025/final 14495 3522 18017
gene_pred/codingquary/v.inaequalis/030/final 12073 1278 13351
gene_pred/codingquary/v.inaequalis/044/final 12164 1320 13484
gene_pred/codingquary/v.inaequalis/049/final 12026 1220 13246
gene_pred/codingquary/v.inaequalis/057/final 13405 1122 14527
gene_pred/codingquary/v.inaequalis/083/final 12024 1392 13416
gene_pred/codingquary/v.inaequalis/096/final 12085 1231 13316
gene_pred/codingquary/v.inaequalis/097/final 12026 1183 13209
gene_pred/codingquary/v.inaequalis/098/final 12030 1257 13287
gene_pred/codingquary/v.inaequalis/101/final 12023 1272 13295
gene_pred/codingquary/v.inaequalis/106/final 11988 1288 13276
gene_pred/codingquary/v.inaequalis/118/final 10392 3397 13789
gene_pred/codingquary/v.inaequalis/119/final 12063 1257 13320
gene_pred/codingquary/v.inaequalis/172/final 12087 1343 13430
gene_pred/codingquary/v.inaequalis/173/final 12002 1154 13156
gene_pred/codingquary/v.inaequalis/182/final 12050 1192 13242
gene_pred/codingquary/v.inaequalis/196/final 12029 1207 13236
gene_pred/codingquary/v.inaequalis/197/final 12094 1259 13353
gene_pred/codingquary/v.inaequalis/199/final 12031 1467 13498
gene_pred/codingquary/v.inaequalis/202/final 11935 1170 13105
gene_pred/codingquary/v.inaequalis/saturn/final 11967 1183 13150
#Functional annotation
A) Interproscan
Interproscan was used to give gene models functional annotations. Annotation was run using the commands below:
Note: This is a long-running script. As such, these commands were run using 'screen' to allow jobs to be submitted and monitored in the background. This allows the session to be disconnected and reconnected over time.
Screen ouput detailing the progress of submission of interproscan jobs was redirected to a temporary output file named interproscan_submission.log .
screen -a
cd /home/groups/harrisonlab/project_files/venturia
ProgDir=/home/passet/git_repos/tools/seq_tools/feature_annotation/interproscan
for Genes in $(ls gene_pred/codingquary/v.*/*/*/final_genes_combined.pep.fasta); do
echo $Genes
$ProgDir/sub_interproscan.sh $Genes
done 2>&1 | tee -a interproscan_submisison.log
Following interproscan annotation split files were combined using the following commands:
ProgDir=/home/passet/git_repos/tools/seq_tools/feature_annotation/interproscan
for Proteins in $(ls gene_pred/codingquary/v.*/*/*/final_genes_combined.pep.fasta); do
Strain=$(echo $Proteins | rev | cut -d '/' -f3 | rev)
Organism=$(echo $Proteins | rev | cut -d '/' -f4 | rev)
echo "$Organism - $Strain"
echo $Strain
InterProRaw=gene_pred/interproscan/$Organism/$Strain/raw
$ProgDir/append_interpro.sh $Proteins $InterProRaw
done
B) SwissProt
for Proteome in $(ls gene_pred/codingquary/v.*/*/*/final_genes_combined.pep.fasta); do
Jobs=$(qstat | grep 'sub_sw' | grep 'qw' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'sub_sw' | grep 'qw' | wc -l)
done
Strain=$(echo $Proteome | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Proteome | rev | cut -f4 -d '/' | rev)
OutDir=gene_pred/swissprot/$Organism/$Strain
SwissDbDir=../../uniprot/swissprot
SwissDbName=uniprot_sprot
ProgDir=/home/passet/git_repos/tools/seq_tools/feature_annotation/swissprot
qsub $ProgDir/sub_swissprot.sh $Proteome $OutDir $SwissDbDir $SwissDbName
done
for SwissTable in $(ls gene_pred/swissprot/*/*/swissprot_v2015_10_hits.tbl); do
# SwissTable=gene_pred/swissprot/v_inaequalis/swissprot_v2015_10_hits.tbl
Strain=$(echo $SwissTable | rev | cut -f2 -d '/' | rev)
Organism=$(echo $SwissTable | rev | cut -f3 -d '/' | rev)
echo "$Organism - $Strain"
OutTable=gene_pred/swissprot/$Organism/$Strain/swissprot_v2015_tophit_parsed.tbl
ProgDir=/home/passet/git_repos/tools/seq_tools/feature_annotation/swissprot
$ProgDir/swissprot_parser.py --blast_tbl $SwissTable --blast_db_fasta ../../uniprot/swissprot/uniprot_sprot.fasta > $OutTable
done
#Genomic analysis
Effector genes
Putative pathogenicity and effector related genes were identified within Braker gene models using a number of approaches:
- A) From Augustus gene models - Identifying secreted proteins
- B) From Augustus gene models - Effector identification using EffectorP
A) From Augustus gene models - Identifying secreted proteins
Required programs:
- SignalP-4.1
- TMHMM
Proteins that were predicted to contain signal peptides were identified using the following commands:
SplitfileDir=/home/passet/git_repos/tools/seq_tools/feature_annotation/signal_peptides
ProgDir=/home/passet/git_repos/tools/seq_tools/feature_annotation/signal_peptides
CurPath=$PWD
for Proteome in $(ls gene_pred/codingquary/v.*/*/*/final_genes_combined.pep.fasta); do
Strain=$(echo $Proteome | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Proteome | rev | cut -f4 -d '/' | rev)
SplitDir=gene_pred/final_genes_split/$Organism/$Strain
mkdir -p $SplitDir
BaseName="$Organism""_$Strain"_final_preds
$SplitfileDir/splitfile_500.py --inp_fasta $Proteome --out_dir $SplitDir --out_base $BaseName
for File in $(ls $SplitDir/*_final_preds_*); do
Jobs=$(qstat | grep 'pred_sigP' | wc -l)
while [ $Jobs -gt 20 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'pred_sigP' | wc -l)
done
printf "\n"
echo $File
qsub $ProgDir/pred_sigP.sh $File signalp-4.1
done
done
The batch files of predicted secreted proteins needed to be combined into a single file for each strain. This was done with the following commands:
for SplitDir in $(ls -d gene_pred/final_genes_split/*/*); do
Strain=$(echo $SplitDir | rev |cut -d '/' -f1 | rev)
Organism=$(echo $SplitDir | rev |cut -d '/' -f2 | rev)
InStringAA=''
InStringNeg=''
InStringTab=''
InStringTxt=''
SigpDir=final_genes_signalp-4.1
for GRP in $(ls -l $SplitDir/*_final_preds_*.fa | rev | cut -d '_' -f1 | rev | sort -n); do
InStringAA="$InStringAA gene_pred/$SigpDir/$Organism/$Strain/split/"$Organism"_"$Strain"_final_preds_$GRP""_sp.aa";
InStringNeg="$InStringNeg gene_pred/$SigpDir/$Organism/$Strain/split/"$Organism"_"$Strain"_final_preds_$GRP""_sp_neg.aa";
InStringTab="$InStringTab gene_pred/$SigpDir/$Organism/$Strain/split/"$Organism"_"$Strain"_final_preds_$GRP""_sp.tab";
InStringTxt="$InStringTxt gene_pred/$SigpDir/$Organism/$Strain/split/"$Organism"_"$Strain"_final_preds_$GRP""_sp.txt";
done
cat $InStringAA > gene_pred/$SigpDir/$Organism/$Strain/"$Strain"_final_sp.aa
cat $InStringNeg > gene_pred/$SigpDir/$Organism/$Strain/"$Strain"_final_neg_sp.aa
tail -n +2 -q $InStringTab > gene_pred/$SigpDir/$Organism/$Strain/"$Strain"_final_sp.tab
cat $InStringTxt > gene_pred/$SigpDir/$Organism/$Strain/"$Strain"_final_sp.txt
done
Some proteins that are incorporated into the cell membrane require secretion. Therefore proteins with a transmembrane domain are not likely to represent cytoplasmic or apoplastic effectors.
Proteins containing a transmembrane domain were identified:
for Proteome in $(ls gene_pred/codingquary/v.*/*/*/final_genes_combined.pep.fasta); do
Jobs=$(qstat | grep 'submit' | grep 'qw' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'submit' | grep 'qw' | wc -l)
done
Strain=$(echo $Proteome | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Proteome | rev | cut -f4 -d '/' | rev)
ProgDir=/home/passet/git_repos/tools/seq_tools/feature_annotation/transmembrane_helices
qsub $ProgDir/submit_TMHMM.sh $Proteome
done
Those proteins with transmembrane domains were removed from lists of Signal peptide containing proteins
for File in $(ls gene_pred/trans_mem/*/*/*_TM_genes_neg.txt); do
Strain=$(echo $File | rev | cut -f2 -d '/' | rev)
Organism=$(echo $File | rev | cut -f3 -d '/' | rev)
echo "$Organism - $Strain"
TmHeaders=$(echo "$File" | sed 's/neg.txt/neg_headers.txt/g')
cat $File | cut -f1 > $TmHeaders
SigP=$(ls gene_pred/final_genes_signalp-4.1/$Organism/$Strain/*_final_sp.aa)
OutDir=$(dirname $SigP)
ProgDir=/home/passet/git_repos/tools/gene_prediction/ORF_finder
$ProgDir/extract_from_fasta.py --fasta $SigP --headers $TmHeaders > $OutDir/"$Strain"_final_sp_no_trans_mem.aa
cat $OutDir/"$Strain"_final_sp_no_trans_mem.aa | grep '>' | wc -l
done
v.inaequalis - 007 1474 v.inaequalis - 024 1510 v.inaequalis - 025 1711 v.inaequalis - 030 1488 v.inaequalis - 044 1477 v.inaequalis - 049 1463 v.inaequalis - 057 1425 v.inaequalis - 083 1493 v.inaequalis - 096 1480 v.inaequalis - 097 1468 v.inaequalis - 098 1489 v.inaequalis - 101 1483 v.inaequalis - 106 1464 v.inaequalis - 118 979 v.inaequalis - 119 1468 v.inaequalis - 172 1473 v.inaequalis - 173 1480 v.inaequalis - 182 1462 v.inaequalis - 196 1510 v.inaequalis - 197 1500 v.inaequalis - 199 1486 v.inaequalis - 202 1467 v.inaequalis - saturn 1471
B) From Augustus gene models - Effector identification using EffectorP
Required programs:
- EffectorP.py
for Proteome in $(ls gene_pred/codingquary/v.*/*/*/final_genes_combined.pep.fasta); do
Jobs=$(qstat | grep 'pred_e' | grep 'qw' | wc -l)
while [ $Jobs -gt 1 ]; do
sleep 10
printf "."
Jobs=$(qstat | grep 'pred_e' | grep 'qw' | wc -l)
done
Strain=$(echo $Proteome | rev | cut -f3 -d '/' | rev)
Organism=$(echo $Proteome | rev | cut -f4 -d '/' | rev)
BaseName="$Organism"_"$Strain"_EffectorP
OutDir=analysis/effectorP/$Organism/$Strain
ProgDir=~/git_repos/tools/seq_tools/feature_annotation/fungal_effectors
qsub $ProgDir/pred_effectorP.sh $Proteome $BaseName $OutDir
done
Those genes that were predicted as secreted and tested positive by effectorP were identified:
for File in $(ls analysis/effectorP/*/*/*_EffectorP.txt); do
Strain=$(echo $File | rev | cut -f2 -d '/' | rev)
Organism=$(echo $File | rev | cut -f3 -d '/' | rev)
echo "$Organism - $Strain"
Headers=$(echo "$File" | sed 's/_EffectorP.txt/_EffectorP_headers.txt/g')
cat $File | grep 'Effector' | cut -f1 > $Headers
Secretome=$(ls gene_pred/final_genes_signalp-4.1/$Organism/$Strain/*_final_sp_no_trans_mem.aa)
OutFile=$(echo "$File" | sed 's/_EffectorP.txt/_EffectorP_secreted.aa/g')
ProgDir=/home/passet/git_repos/tools/gene_prediction/ORF_finder
$ProgDir/extract_from_fasta.py --fasta $Secretome --headers $Headers > $OutFile
OutFileHeaders=$(echo "$File" | sed 's/_EffectorP.txt/_EffectorP_secreted_headers.txt/g')
cat $OutFile | grep '>' | tr -d '>' > $OutFileHeaders
cat $OutFileHeaders | wc -l
Gff=$(ls gene_pred/codingquary/$Organism/$Strain/*/final_genes_appended.gff3)
EffectorP_Gff=$(echo "$File" | sed 's/_EffectorP.txt/_EffectorP_secreted.gff/g')
ProgDir=/home/passet/git_repos/tools/gene_prediction/ORF_finder
$ProgDir/extract_gff_for_sigP_hits.pl $OutFileHeaders $Gff effectorP ID > $EffectorP_Gff
done
v.inaequalis - 007 583 v.inaequalis - 024 637 v.inaequalis - 025 681 v.inaequalis - 030 614 v.inaequalis - 044 606 v.inaequalis - 049 594 v.inaequalis - 057 554 v.inaequalis - 083 610 v.inaequalis - 096 609 v.inaequalis - 097 608 v.inaequalis - 098 615 v.inaequalis - 101 605 v.inaequalis - 106 600 v.inaequalis - 118 419 v.inaequalis - 119 599 v.inaequalis - 172 609 v.inaequalis - 173 589 v.inaequalis - 182 587 v.inaequalis - 196 628 v.inaequalis - 197 624 v.inaequalis - 199 611 v.inaequalis - 202 608 v.inaequalis - saturn 609