/IntroductionAlgorithmsDataStructures

This repository contains the code associated with the "Introduction to Algorithms and Data Structures" Safari Video. https://www.oreilly.com/live-training/courses/introduction-to-algorithms-and-data-structures/0636920306535/

Primary LanguagePython

IntroductionAlgorithmsDataStructures

This repository contains the code associated with the "Introduction to Algorithms and Data Structures" Safari Video. https://www.oreilly.com/live-training/courses/introduction-to-algorithms-and-data-structures/0636920306535/

Code Examples

The code examples are referred to in the slides. Here are sample executions. All examples are derived by running Python 3.6 on Linux. Start in the current directory and change directory (cd) into the different subdirectories to execute the code as you see below.

Note that the run-time and performance numbers in this README file will not exactly match the empirical numbers in the slides because, as you should know, your mileage may vary when running this code on different operating systems and machines.

Algorithm Formalities

The first section covers at a high level the mathematical formalisms used to measure the time complexity and space complexity of various algorithms. This is a rather informal presentation of fundamental concepts that have been extensively studied for decades. For the most part, the Big O notation I present characterizes the performance or space expectations in the worst case.

$ cd "1. log(n) behavior"
$ python3 timing.py
N       Sum             Set             String          Loop
2       0.000340        0.000719        0.001278        0.001356
4       0.000469        0.001087        0.002519        0.002853
8       0.000732        0.001887        0.004891        0.007287
16      0.001322        0.003326        0.011106        0.022486
32      0.002428        0.007014        0.024445        0.079047
64      0.004606        0.012505        0.062425        0.288615
128     0.009418        0.026903        0.173157        1.107360
256     0.018405        0.050565        0.552694        4.365471
512     0.036613        0.111584        1.869063        19.802331
1024    0.072648        0.205249        6.836513        81.542065
  • Sum adds n numbers together
  • Set uses a Python set to check if list contains duplicate
  • String constructs a large string from list to see if it contains a duplicate value
  • Loop uses a doubly-nested loop to check if list contains duplicate values.

This code example doesn't appear in the slides

$ cd "1. log(n) behavior"
$ python3 timingContains.py
N       Contains        SortContains    BinaryArraySearch
2       0.002215        0.004460        0.009865
4       0.002665        0.006678        0.012944
8       0.003542        0.010472        0.015342
16      0.005451        0.018023        0.017826
32      0.008994        0.033644        0.020851
64      0.016200        0.063886        0.023410
128     0.029997        0.126325        0.026265
256     0.059538        0.247645        0.030780
512     0.120109        0.499623        0.042858
1024    0.235471        1.022691        0.046437
2048    0.488453        2.021996        0.050133
4096    0.993467        4.089057        0.053896
8192    2.013314        8.130922        0.058048
16384   4.024054        16.326974       0.061534
32768   8.151769        33.002672       0.065873

This table empirically evaluates code to "Check if List Contains a Target Integer."

  • Contains use the python in operator
  • SortContains uses a linear sort over a sorted list
  • BinaryArraySearch over a sorted list

Performance Comparison

$ cd "2. Basic Data Structures"
$ python3 queueWordLadder.py
['COLD', 'CORD', 'CARD', 'WARD', 'WARM']

List            BASearch        Dictionary
412.751261      14.179721       2.790587

This code uses a stand-along queue to compute a Word Ladder between 'COLD' and 'WARM'. When determining whether a four-letter word is a valid English word, there are three possibile approaches:

  • Use a Python list to store all words and check using in
  • Use a Sorted List and use BinaryArraySearch
  • Use a Python dictionary

Word Ladder Summary

$ cd "2. Basic Data Structures"
$ python3 queueTimingThreeWordLadder.py
Queue   List            BASearch        Dictionary
DQ      405.722967      14.274099       2.756425
List    407.715855      14.827824       3.329750
Q       409.225666      17.220676       5.669427

This code choose three different data structures to store the queue. The impact is marginal. When considering the fastest option for checking whether a four-letter word is a valid English word (Dictionary) the three different implementations show how the deque offers the best implementation. The list implementation is next, and the queue implementation a distant third, because of the overhead from supporting thread-safe operations.

Comparison to Sorting Methods

$ cd "3. Sorting Algorithms"
$ python3 sorting.py
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
N       Insert  Merge   Tim
16      0.0020  0.0068  0.0001
32      0.0070  0.0152  0.0003
64      0.0302  0.0333  0.0006
128     0.0943  0.0729  0.0011
256     0.3889  0.1614  0.0022
512     1.7536  0.3729  0.0048
1024    7.3282  0.8242  0.0106
2048    28.7848 1.7879  0.0237
4096      ---   3.8638  0.0508
8192      ---   8.1089  0.1141
16384     ---   17.0846 0.2484
32768     ---   35.9748 0.5271

The first two lines of output briefly confirm InsertionSort and MergeSort are working. The table compares the performance of the three sorting algorithms when sorting a list formed by concatenating (1) N sorted integers from 0 to N-1; with (2) N/4 sorted integers randomly samples from the range (0, N/4).

Note that InsertionSort is not run for lists larger than 2048 elements because of the quadratic nature of its time complexity. Observe how its performance quadruples when the problem size doubles.

TimSort is almost two orders of magnitude faster.

Tasks to Solve 1, 2,3

This code takes the longest to run. The code in this section requires a NetworkX installation (https://pypi.org/project/networkx/)

First it solves Task #2, finding 60 words that belong to no word ladder.

I'm glad to see that it is impossible to form a word ladder from 'GOOD' to 'EVIL'.

Second, it solves Task #4, finding disjoint subsets of non-connectable words. Of the 5,875 four-letter words, it is possible to form a word ladder between any two of 5,807 words. There are three smaller "islands" that are formed by smaller subsets, as you can see.

It then solves the 'COLD' -> 'WARM' Word Ladder using a BreadthFirstSearch, which results in a Word Ladder of 5 words. Using DepthFirstSearch, the resulting word ladder has 392 words.

$ cd "4. Graph Algorithms"
$ python3 graphCode.py
There are 37362 edges in the graph.
Following 60 words belong to no word ladder.
['ADZE', 'AKOV', 'ANKH', 'AWFU', 'AWOL', 'CEYX', 'DEGU', 'EBBS', 'ECRU',
'EFIK', 'EJOO', 'EKOI', 'ELHI', 'ENIF', 'ENKI', 'ENVY', 'EPEE', 'EPHA',
'ERUC', 'ESOX', 'ETYM', 'EVIL', 'EXPO', 'HEXA', 'HOJU', 'HYMN', 'IGLU',
'IJMA', 'IMAM', 'ISBA', 'ITYS', 'IVIN', 'JEUX', 'JISM', 'JUJU', 'LLYN',
'LWEI', 'NGAI', 'NIOG', 'OCHT', 'ODSO', 'OGPU', 'OHMS', 'OLPE', 'OMAO',
'OPSY', 'PFFT', 'PFUI', 'SYBO', 'TSIA', 'UBII', 'UGHS', 'ULMO', 'UPBY',
'UPON', 'VLEI', 'VULN', 'WROX', 'YCIE', 'ZYGA']
Disjoint subsets of Word Ladders
AAHS -> 5807 with sample of ['AAHS', 'HAHS', 'HEHS', 'PEHS']
EPPY -> 2 with sample of ['EPPY', 'ESPY']
ERYX -> 4 with sample of ['ERYX', 'ORYX', 'ONYX', 'ONYM']
GEGG -> 2 with sample of ['GEGG', 'YEGG']
['COLD', 'CORD', 'CARD', 'WARD', 'WARM']
5
['COLD', 'WOLD', 'WORD', 'WORT', 'WOWT', 'YOWT', 'YOWS', 'YOKS', 'YUKS',
'YUPS', 'YIPS', 'ZIPS', 'ZITS', 'ZITI', 'ZATI', 'YATI', 'YETI', 'YETT',
'YEST', 'YESO', 'PESO', 'PISO', 'PIST', 'WIST', 'WUST', 'WUSS', 'WYSS',
'WYNS', 'WYNE', 'WYVE', 'WOVE', 'WOTE', 'YOTE', 'YORE', 'YERE', 'YERN',
'YIRN', 'YIRR', 'YARR', 'YARU', 'YABU', 'YABA', 'YAYA', 'YAYS', 'YAMS',
'YAMP', 'YAWP', 'YAWY', 'JAWY', 'JEWY', 'PEWY', 'PEWS', 'TEWS', 'TEWA',
'TERA', 'VERA', 'VIRA', 'VIVA', 'VIVE', 'VISE', 'VASE', 'WASE', 'WESE',
'WEDE', 'WIDE', 'WIRE', 'WIRY', 'WINY', 'WINO', 'VINO', 'VINT', 'VENT',
'WENT', 'WEPT', 'SEPT', 'SEXT', 'TEXT', 'TELT', 'TOLT', 'VOLT', 'VOLE',
'SOLE', 'SOPE', 'TOPE', 'TYPE', 'TYRE', 'TYRR', 'TYER', 'TYES', 'TOES',
'WOES', 'WOPS', 'WAPS', 'WAWS', 'WAWL', 'WAUL', 'WAUR', 'WAIR', 'WHIR',
'WHIZ', 'WHUZ', 'WHUN', 'WHEN', 'WREN', 'WRAN', 'WRAW', 'DRAW', 'DROW',
'TROW', 'TROY', 'TREY', 'TRET', 'TRYT', 'TRYP', 'TRIP', 'TRIO', 'THIO',
'THRO', 'TORO', 'TOYO', 'MOYO', 'MOZO', 'KOZO', 'KOTO', 'ROTO', 'ROTS',
'SOTS', 'SOYS', 'SOYA', 'SORA', 'SURA', 'SURF', 'TURF', 'TURP', 'TUMP',
'TUME', 'TUTE', 'TUTU', 'TUNU', 'TUNY', 'TONY', 'TOWY', 'TOWN', 'TOON',
'ZOON', 'ZOOS', 'MOOS', 'MOSS', 'POSS', 'POSY', 'ROSY', 'ROXY', 'RIXY',
'RIMY', 'RIMU', 'LIMU', 'LITU', 'MITU', 'MITY', 'PITY', 'PITH', 'WITH',
'WICH', 'WICK', 'WILK', 'WULK', 'WULL', 'WELL', 'YELL', 'YILL', 'ZILL',
'ZOLL', 'ROLL', 'ROOL', 'WOOL', 'WOOM', 'WHOM', 'WHOP', 'WHAP', 'WHAT',
'THAT', 'TWAT', 'TWIT', 'TWIN', 'TAIN', 'ZAIN', 'ZEIN', 'VEIN', 'VEIL',
'VEAL', 'VIAL', 'VIOL', 'SIOL', 'SION', 'SLON', 'SLOW', 'SWOW', 'SWOT',
'STOT', 'STUT', 'STUN', 'STEN', 'STEY', 'STAY', 'SWAY', 'SWAP', 'SWEP',
'SKEP', 'SKIP', 'SNIP', 'SNUP', 'SOUP', 'YOUP', 'YOUR', 'TOUR', 'TOUG',
'TRUG', 'TRUN', 'GRUN', 'GRUS', 'URUS', 'URNS', 'URNA', 'URVA', 'ULVA',
'ULLA', 'OLLA', 'OLEA', 'PLEA', 'PLEX', 'PREX', 'PREP', 'PROP', 'PROS',
'PHOS', 'THOS', 'THUS', 'THUD', 'CHUD', 'CRUD', 'CRUX', 'CRAX', 'CRAP',
'FRAP', 'FRAY', 'PRAY', 'PRAT', 'PRUT', 'POUT', 'ROUT', 'ROUX', 'DOUX',
'DOUM', 'DRUM', 'DRUB', 'DRIB', 'FRIB', 'FRIT', 'WRIT', 'WRIG', 'PRIG',
'PRIM', 'PLIM', 'SLIM', 'SWIM', 'SWUM', 'SCUM', 'SCUR', 'SPUR', 'SPUG',
'SPIG', 'SPIV', 'SHIV', 'SHIT', 'SUIT', 'YUIT', 'YURT', 'HURT', 'HURR',
'PURR', 'PURU', 'PULU', 'SULU', 'SUSU', 'SUSI', 'SUJI', 'FUJI', 'FUCI',
'FUCK', 'YUCK', 'YUCH', 'YECH', 'YEAH', 'YEAS', 'YENS', 'LENS', 'LINS',
'TINS', 'TINK', 'ZINK', 'ZONK', 'ZONE', 'RONE', 'RUNE', 'SUNE', 'SUNS',
'SUMS', 'SUMO', 'SUTO', 'AUTO', 'ALTO', 'ALTS', 'ARTS', 'ORTS', 'OUTS',
'PUTS', 'PUTZ', 'FUTZ', 'FUZZ', 'HUZZ', 'HIZZ', 'SIZZ', 'SIZY', 'SIDY',
'TIDY', 'TIVY', 'TAVY', 'WAVY', 'WALY', 'WALI', 'WADI', 'SADI', 'SARI',
'VARI', 'VARY', 'VADY', 'LADY', 'LAZY', 'MAZY', 'MAZE', 'RAZE', 'RAVE',
'SAVE', 'SATE', 'SITE', 'SITA', 'SINA', 'SINH', 'SISH', 'SOSH', 'TOSH',
'TUSH', 'TUSK', 'TUIK', 'TUIS', 'TUGS', 'VUGS', 'VUGH', 'AUGH', 'AUGE',
'LUGE', 'LURE', 'MURE', 'MUSE', 'MUSA', 'RUSA', 'RUTA', 'RUTH', 'RUKH',
'RAKH', 'RASH', 'RESH', 'RESP', 'RISP', 'RISS', 'RIGS', 'REGS', 'SEGS',
'SESS', 'SASS', 'TASS', 'TATS', 'VATS', 'VETS', 'WETS', 'WETA', 'WEKA',
'WEKI', 'WERI', 'WERF', 'WARF', 'WARM']
392
 All Pairs Shortest Path
ABRI	   Degree=1
ABSI	   Degree=2
ASSI	   Degree=3
ASSE	   Degree=4
ARSE	   Degree=3
ERSE	   Degree=6
ELSE	   Degree=5
ELLE	   Degree=3
ALLE	   Degree=12
ALLS	   Degree=13
ALPS	   Degree=8
AMPS	   Degree=7
IMPS	   Degree=4
IMPY	   Degree=3
IMMY	   Degree=3
ISMY	   Degree=2
ISMS	   Degree=1
 Floyd Warshall Done

Using the NetworkX built-in support for Dijkstra's All Pairs Shortest Path algorithm, we can discover the longest Word Ladder in this dictionary contains 17 words.

Using my native Python implementation of Floyd-Warshall, a different algorithm to solve the same problem, the same result was computed in just about eight hours. One reason for the timing difference is that Dijkstra's All Pairs Shortest Path has time complexity of O(E log V) while Floyd-Warshall has time complexity of O(V^3). The behavior difference results from the total number of edges. In the worst case, there is an edge between every pair of nodes, for a total of n*(n-1)/2 edges which is on the order of n^2. In sparse graphs, the number of edges is much lower, on the order of n. Dijkstra's All Pairs Shortest Path will outperform Floyd-Warshall on sparse graphs.

This particular graph has 5,875 nodes and 37,362 edges. There could be a total of 17,254,875 edges, but only 0.22% of these actually exist, thus this is a fine example of a sparse graph.

SkipList Behavior

The code in this section requires the pyskiplist implementation which can be found at https://pypi.org/project/pyskiplist/.

The first table below reports the average search time for an element in a Skip List or AVL tree containing N random integers (sometimes the element is in the structure, sometimes it is not).

$ cd "5. SkipList"
$ python3 skipList.py
Average Performance Times
N	    SL-RND	AVL-RND
16	    0.0021	0.0007
32	    0.0025	0.0008
64	    0.0027	0.0008
128	    0.0032	0.0010
256	    0.0034	0.0011
512	    0.0042	0.0012
1024	    0.0045	0.0013
2048	    0.0047	0.0015
4096	    0.0054	0.0016
8192	    0.0059	0.0016
16384	    0.0065	0.0016
32768	    0.0071	0.0016

Construction Times
N	SL-RND	AVL-RND	SL-ASC	AVL-ASC	SL-DESC	AVL-DESC
16	0.094	0.069	0.085	0.072	0.087	0.071
32	0.203	0.178	0.170	0.183	0.188	0.187
64	0.453	0.435	0.354	0.448	0.399	0.449
128	1.001	1.035	0.754	1.061	0.882	1.069
256	2.217	2.347	1.566	2.428	1.904	2.427
512	4.899	5.360	3.359	5.518	4.163	5.491
1024	10.727	12.200	7.108	12.429	9.072	12.394
2048	23.726	27.469	14.965	27.582	19.385	27.568
4096	51.944	60.905	31.856	59.166	42.000	59.329
8192	110.930	132.412	66.509	130.233	89.444	130.967
16384	239.637	289.048	139.736	281.538	190.898	282.001
32768	515.122	634.220	291.985	605.307	405.287	603.555

The second table compares the construction time of AVL Binary Trees and SkipList structures for N random integers.