/ZQCNN-v0.0

一款比mini-caffe更快的Forward库,觉得好用请点星啊

Primary LanguageC

ZQCNN-v0.0是ZuoQing参照mini-caffe写的forward库,随便用用

更新日志

2018-09-20日更新

(1)更新人脸识别模型tar-far精度的测试方法,可以按照步骤How-to-evaluate-TAR-FAR-on-your-dataset自行构造测试集测试模型精度。

(2)按照(1)我清洗CASIA-Webface构造了两个测试集webface1000X50webface5000X20,并测试了我开源的几个主要人脸识别模型的精度。

2018-09-13日更新

(1)支持从内存加载模型

(2)增加编译配置ZQ_CNN_CompileConfig.h,可以选择是否使用_mm_fmadd_ps, _mm256_fmadd_ps (可以测一下速度看看到底快了还是慢了)。

2018-09-12日更新 利用insightface训练112*96(即sphereface的尺寸)步骤: InsightFace: how to train 112*96

2018-08-15日更新

(1)添加自然场景文本检测,模型从TextBoxes转过来的。我个人觉得速度太慢,而且准确度不高。

注意这个项目里用的PriorBoxLayer与SSD里的PriorBoxLayer是不同的,为了导出ZQCNN格式的权重我修改了deploy.prototxt保存为deploy_tmp.prototxt。 从此处下载模型。

(2)添加图片鉴黄,模型从open_nsfw转过来的,准确度高不高我也没测过。

此处下载模型。

2018-08-10日更新

成功转了mxnet上的GenderAge-r50模型 以及Arcface-LResNet100E-IR,与转MobileFaceNet模型步骤一样。 查看mxnet2zqcnn

下面Model Zoo 有我转好的模型,比自动转出来的应该略快。

打开ZQCNN.sln运行SampleGenderAge查看效果。我E5-1650V4的CPU,单线程时间波动很大,均值约1900-2000ms,四线程400多ms。

2018-08-09日更新

添加mxnet2zqcnn,成功将mxnet上的MobileFaceNet转成ZQCNN格式(不能保证其他模型也能转成功,ZQCNN还不支持很多Layer)。查看mxnet2zqcnn

2018-08-07日更新

BUG修复:之前Convolution, DepthwiseConvolution, InnerProduct, BatchNormScale/Scale默认with_bias=true, 现在改成默认with_bias=false。也就是之前的代码无法加载不带bias的这几个Layer。

示例,如下这样一个Layer,以前会默认为有bias_term,现在默认没有bias_term

Convolution name=conv1 bottom=data top=conv1 num_output=10 kernel_size=3 stride=1

2018-08-06日更新

增加人脸识别在LFW数据库的精度测试。打开ZQlibFaceID.sln可以看到相关Project。

由于C++代码的计算精度与matlab略有差距,统计出的精度也有一些差别,但是相差在0.1%以内。

2018-08-03日更新

支持多线程(通过openmp加速)。请注意,目前多线程反而比单线程慢

2018-07-26日更新

支持MobileNet-SSD。caffemodel转我用的模型参考export_mobilenet_SSD_caffemodel_to_nchw_binary.m。需要编译出matcaffe才行。 你可以试试这个版本caffe-ZQ

2018-06-05日更新

跟上时代潮流、发布源码。 忘了说需要依赖openblas,我是直接用的mini-caffe里面的那个版本,自己编译出来的很慢。

Model Zoo

人脸检测

MTCNNMTCNN转的格式

人脸识别

模型 LFW精度(ZQCNN) LFW精度(OpenCV3.4.2) LFW精度(minicaffe) 耗时 (ZQCNN) 备注
MobileFaceNet-res2-6-10-2-dim128 99.67%-99.55%(matlab crop), 99.72-99.60%(C++ crop) 99.63%-99.65%(matlab crop), 99.68-99.70%(C++ crop) 99.62%-99.65%(matlab crop), 99.68-99.60%(C++ crop) 时间与dim256接近 网络结构与dim256一样,只不过输出维数不同
MobileFaceNet-res2-6-10-2-dim256 99.60%-99.60%(matlab crop), 99.62-99.62%(C++ crop) 99.73%-99.68%(matlab crop), 99.78-99.68%(C++ crop) 99.55%-99.63%(matlab crop), 99.60-99.62%(C++ crop) 单线程约85ms,四线程约30ms, 3.6GHz 网络结构在下载链接里,用faces_emore训练的
MobileFaceNet-res2-6-10-2-dim512 99.52%-99.60%(matlab crop), 99.63-99.72%(C++ crop) 99.70%-99.67%(matlab crop), 99.77-99.77%(C++ crop) 99.55%-99.62%(matlab crop), 99.62-99.68%(C++ crop) 时间与dim256接近 网络结构与dim256一样,只不过输出维数不同。感谢moli训练此模型
模型 LFW精度(ZQCNN) LFW精度(OpenCV3.4.2) LFW精度(minicaffe) 耗时 (ZQCNN) 备注
MobileFaceNet-res4-8-16-4-dim128 99.72%-99.72%(matlab crop), 99.72-99.68%(C++ crop) 99.82%-99.83%(matlab crop), 99.80-99.78%(C++ crop) 99.72%-99.72%(matlab crop), 99.72-99.68%(C++ crop) 时间与dim256接近 网络结构与dim256一样,只不过输出维数不同
MobileFaceNet-res4-8-16-4-dim256 99.78%-99.78%(matlab crop), 99.75-99.75%(C++ crop) 99.82%-99.82%(matlab crop), 99.80-99.82%(C++ crop) 99.78%-99.78%(matlab crop), 99.73-99.73%(C++ crop) 单线程约135ms,四线程约42ms, 3.6GHz 网络结构在下载链接里,用faces_emore训练的
MobileFaceNet-res4-8-16-4-dim512 99.80%-99.73%(matlab crop), 99.85-99.83%(C++ crop) 99.83%-99.82%(matlab crop), 99.87-99.83%(C++ crop) 99.80%-99.73%(matlab crop), 99.85-99.82%(C++ crop) 时间与dim256接近 网络结构与dim256一样,只不过输出维数不同。感谢moli训练此模型
模型\测试集webface1000X50 thresh@ FAR=1e-7 TAR@ FAR=1e-7 thresh@ FAR=1e-6 TAR@ FAR=1e-6 thresh@ FAR=1e-5 TAR@ FAR=1e-5
MobileFaceNet-res2-6-10-2-dim128 0.78785 9.274% 0.66616 40.459% 0.45855 92.716%
MobileFaceNet-res2-6-10-2-dim256 0.77708 7.839% 0.63872 40.934% 0.43182 92.605%
MobileFaceNet-res2-6-10-2-dim512 0.76699 8.197% 0.63452 38.774% 0.41572 93.000%
MobileFaceNet-res4-8-16-4-dim128 0.79268 9.626% 0.65770 48.252% 0.45431 95.576%
MobileFaceNet-res4-8-16-4-dim256 0.76858 9.220% 0.62852 46.195% 0.40010 96.929%
MobileFaceNet-res4-8-16-4-dim512 0.76287 9.296% 0.62555 44.775% 0.39047 97.347%
模型\测试集webface5000X20 thresh@ FAR=1e-7 TAR@ FAR=1e-7 thresh@ FAR=1e-6 TAR@ FAR=1e-6 thresh@ FAR=1e-5 TAR@ FAR=1e-5
MobileFaceNet-res2-6-10-2-dim128 0.70933 29.558% 0.51732 85.160% 0.45108 94.313%
MobileFaceNet-res2-6-10-2-dim256 0.68897 28.376% 0.48820 85.278% 0.42386 94.244%
MobileFaceNet-res2-6-10-2-dim512 0.68126 27.708% 0.47260 85.840% 0.40727 94.632%
MobileFaceNet-res4-8-16-4-dim128 0.71238 32.153% 0.51391 89.525% 0.44667 96.583%
MobileFaceNet-res4-8-16-4-dim256 0.68490 30.639% 0.46092 91.900% 0.39198 97.696%
MobileFaceNet-res4-8-16-4-dim512 0.67303 32.404% 0.45216 92.453% 0.38344 98.003%
模型\测试集TAO ids:6606,ims:87210 thresh@ FAR=1e-7 TAR@ FAR=1e-7 thresh@ FAR=1e-6 TAR@ FAR=1e-6 thresh@ FAR=1e-5 TAR@ FAR=1e-5
MobileFaceNet-res2-6-10-2-dim128 0.92204 01.282% 0.88107 06.837% 0.78302 41.740%
MobileFaceNet-res2-6-10-2-dim256 0.91361 01.275% 0.86750 07.081% 0.76099 42.188%
MobileFaceNet-res2-6-10-2-dim512 0.90657 01.448% 0.86061 07.299% 0.75488 41.956%
MobileFaceNet-res4-8-16-4-dim128 0.92098 01.347% 0.88233 06.795% 0.78711 41.856%
MobileFaceNet-res4-8-16-4-dim256 0.90862 01.376% 0.86397 07.083% 0.75975 42.430%
MobileFaceNet-res4-8-16-4-dim512 0.90710 01.353% 0.86190 06.948% 0.75518 42.241%

更多人脸模型请查看Model-Zoo-for-Face-Recognition

表情识别

FacialEmotion 七类表情用Fer2013训练

性别年龄识别

GenderAge-r50insightfacegamodel-r50转的格式。

目标检测

MobileNetSSDMobileNet-SSD转的格式

MobileNetSSD-Mouth 用于SampleDetectMouth

文字检测

TextBoxesTextBoxes转的格式

图片鉴黄

NSFWopen_nsfw转的格式

相关文章

(1)人脸特征向量用整数存储精度损失多少?

(2)千万张脸的特征向量,计算相似度提速?

(3)打造一款比mini-caffe更快的Forward库

(4)向量点积的精度问题

(5)ZQCNN支持Depthwise Convolution并用mobilenet改了一把SphereFaceNet-10

(6)跟上时代潮流,发布一些源码

(7)ZQCNN支持SSD,比mini-caffe快大概30%

(8)ZQCNN的SSD支持同一个模型随意改分辨率

(9)ZQCNN格式的99.78%精度的人脸识别模型

(10)ZQCNN增加人脸识别在LFW数据集上的测试代码

(11)抱紧mxnet的大腿,着手写mxnet2zqcnn