/QoS-Prediction-Algorithm-library

一个计划复现主流QoS预测算法的仓库

Primary LanguagePythonMIT LicenseMIT

引言

QoS预测是服务计算中非常热门的话题,随着研究的深入,越来越多高效、准确的QoS预测方法被提出。但众多方法实现标准各异,这导致了当一个新方法提出时,很难在同一尺度下与先前的方法进行公平地竞争。本项目旨在复现历来被人熟知的QoS预测方法,并统一初始化参数、统一训练数据结构、统一训练方法,构建一个内容丰富、使用简单的QoS预测算法库。

代办事项

Memory-Based 完成情况 论文 公式
UMEAN
IMEAN
UPCC Shao L, Zhang J, Wei Y, et al. Personalized qos prediction forweb services via collaborative filtering[C]//Ieee international conference on web services (icws 2007). IEEE, 2007: 439-446.
IPCC MLASarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web. 2001: 285-295.
WSRec(UIPCC)
NRCF
RACF
Model-Based 完成情况 论文 公式
MF Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. $ \min {\mathbf{p}, \mathbf{q}} \frac{1}{2} \sum{(u, i) \in \mathbf{O}}\left|r_{u, i}-\mathbf{p}{u} \mathbf{q}{i}^{T}\right|^{2}+\frac{1}{2} \lambda\left(\left|\mathbf{p}{u}\right|^{2}+\left|\mathbf{q}{i}\right|^{2}\right)$
PMF $E=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{M} I_{i j}\left(R_{i j}-U_{i}^{T} V_{j}\right)^{2}+\frac{\lambda_{U}}{2} \sum_{i=1}^{N}\left|U_{i}\right|{F r o}^{2}+\frac{\lambda{V}}{2} \sum_{j=1}^{M}\left|V_{j}\right|_{F r o}^{2}$
NMF Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. $ \begin{aligned} &\min {\mathbf{p}, \mathbf{q}} \frac{1}{2} \sum{(u, i) \in \mathbf{O}}\left|r_{u, i}-\mathbf{p}{u} \mathbf{q}{i}^{T}\right|^{2} \ &\text { s.t. } \mathbf{p}{u, \cdot}>0, \mathbf{q}{i, \cdot}>0 \end{aligned}$
MLP
NewMF
GMF
Federated-Based 完成情况 算法介绍/论文/公式
FedMF
FedNMF
杂项 完成情况
注释
训练日志
复杂度优化 ⏱️
训练数据保存
支持GPU
训练可视化 ⏱️

Baseline

Reference

pytorch-styleguide