This repo contains the code used to run the experiments for an extended version of Gouk et al. (2018). The code uses dopt, a deep learning framework written in D.
The following command will train a wide residual network on the CIFAR-10 dataset:
./cifar10.d --datapath ~/Datasets/cifar10/ --norm=inf --lambda=3 --arch=wrn
Gouk, H., Frank, E., Pfahringer, B., & Cree, M. (2018). Regularisation of Neural Networks by Enforcing Lipschitz Continuity. arXiv preprint arXiv:1804.04368.