Tensorflow implementation of deep learning based domain adaptation models. See more in implemented algorithm.
Work in progress: Experiment results will be appeared soon!
git clone https://github.com/asahi417/DeepDomainAdaptation
cd DeepDomainAdaptation
pip install .
- install error
You might have install error if your environment dosen't havenumpy
andcython
, due to thepot
library. Then, import them before install this repo.
pip install numpy
pip install cython
pip install .
This script converts dataset to tfrecord format.
usage: script_tfrecord.py [-h] --data [DATA]
optional arguments:
-h, --help show this help message and exit
--data [DATA] dataset name in dict_keys(['mnist', 'svhn'])
This script is to train models.
usage: script_train.py [-h] -m [MODEL] -e [EPOCH] [-v [VERSION]]
optional arguments:
-h, --help show this help message and exit
-m [MODEL], --model [MODEL]
Model name in dict_keys(['dann', 'deep_jdot'])
-e [EPOCH], --epoch [EPOCH]
Epoch
-v [VERSION], --version [VERSION]
Checkpoint version if train from existing checkpoint
- Domain Adversarial Neural Network
- Deep Joint Distribution Optimal Transport
- Damodaran, Bharath Bhushan, et al. "DeepJDOT: Deep Joint distribution optimal transport for unsupervised domain adaptation." arXiv preprint arXiv:1803.10081 (2018).
- Nicolas Courty, et al. "Joint distribution optimal transportation for domain adaptation" Advances in Neural Information Processing Systems. 2017.
- implementation