/BayesianInference4GW_GWData_Bootcamp

The demo for the class of Bayesian Inference for GW in the GWData Bootcamp

Primary LanguageJupyter NotebookMIT LicenseMIT

BayesianInference4GW_GWData_Bootcamp

The complete materials for the Gravitational Wave Data Exploration: A Practical Training in Programming and Analysis can be found in this GitHub repo.

  • Sci Talk: Bayesian inference for gravitational-wave science (Guest Lecture by Junjie Zhao)

    Description
      - Brief introduction to gravitational wave (引力波简要介绍)
      - Part I: Bayesian inference (贝叶斯推断)
          - Definition of “probability” ("概率"的定义)
          - Rethink the interpretations (重思概率诠释)
              - Frequentist statistics (频率学派)
              - Bayesian statistics (贝叶斯学派)
          - Bayes' theorem (贝叶斯定理)
              - Application to the detection of gravitational wave (在引力波探测上应用)
          - Bayesian inference framework (贝叶斯推断框架)
              - Parameter estimation for gravitational-wave data (引力波数据分析中参数估计)
              - Model selection for gravitational-wave data (引力波数据分析中模型选择)
      - Q & A
      - Part II: Bayesian computation (贝叶斯计算方法)
          - Markov Chain Monte Carlo (MCMC; 马尔可夫链-蒙特卡罗方法)
              - hands-on tiny mcmc example
          - Nested sampling (嵌套采样)
              - hands-on tiny nested-sampling example
      - Part III: All in gravitational-wave data (一切尽在引力波数据中)
          - Use Bilby & Parallel Bilby in the GW data analysis
          - nShow the complete pipeline for the data analysis
      - The AMAZING Thomas Bayes (为美好的世界献上"贝叶斯定理")
      - Q & A
    

Talk: Bayesian inference for gravitational-wave science

About the authors

Dr. Junjie Zhao (赵俊杰) received his Ph.D. degree in theoretical physics from Peking University in 2021 and is currently doing scientific research as a "LiYun" postdoctoral fellow (励耘博士后) in the Department of Astronomy, Beijing Normal University. The main research interests are gravitational-wave physics, testing gravity, physics of pulsar, etc.

Table of Contents (内容概览)

Below is the overview of this seminar.

  • Brief introduction to gravitational wave (引力波简要介绍)
  • Part I: Bayesian inference (贝叶斯推断)

    • Definition of “probability” ("概率"的定义)
    • Rethink the interpretations (重思概率诠释)
      • Frequentist statistics (频率学派)
      • Bayesian statistics (贝叶斯学派)
    • Bayes' theorem (贝叶斯定理)
      • Application to the detection of gravitational wave (在引力波探测上应用)
    • Bayesian inference framework (贝叶斯推断框架)
      • Parameter estimation for gravitational-wave data (引力波数据分析中参数估计)
      • Model selection for gravitational-wave data (引力波数据分析中模型选择)
  • Q & A

  • Part II: Bayesian computation (贝叶斯计算方法)

    • Markov Chain Monte Carlo (MCMC; 马尔可夫链-蒙特卡罗方法)
      • hands-on tiny mcmc example
    • Nested sampling (嵌套采样)
      • hands-on tiny nested-sampling example
  • Part III: All in gravitational-wave data (一切尽在引力波数据中)

    • Use Bilby & Parallel Bilby in the GW data analysis
    • Show the complete pipeline for the data analysis
  • The AMAZING Thomas Bayes (为美好的世界献上"贝叶斯定理")

  • Q & A

The environment for the GW analysis

Here, I recommend using the conda or mamba command to manage your environment. Please make sure you have installed the Miniforge / Miniconda / Anaconda software.

Recommend: you can always replace the conda with the mamba (alternative faster conda) to manage your environment.

You can run

conda --version
mamba --version

to check your conda or mamba environment.

Warning: if you are using the Windows computer, please install WSL2 or use the remote Linux server to obtain the best experience.

Create the full environment [Recommend for the professional user]

To create the full environment, run the following command:

bash ./envs/update_igwn_envs.sh

If your network is blocked, please try

conda env update -f ./envs/igwn-py310-linux-64.yaml

for the Linux x86-64 and Linux amd64 architecture.

For the macOS x86-64 architecture

conda env update -f ./envs/igwn-py310-osx-64.yaml

For the macOS arm64 (Apple silicon)

conda env update -f ./envs/igwn-py310-osx-arm64.yaml

Create the tiny environment

conda create -n igwn-py310 python=3.10 numpy scipy lalsuite pycbc bilby parallel-bilby dynesty emcee jupyterlab ipympl ipywidgets

More advanced commands for conda / mamba can be found at Managing environments