The complete materials for the Gravitational Wave Data Exploration: A Practical Training in Programming and Analysis
can be found in this GitHub repo.
-
Sci Talk: Bayesian inference for gravitational-wave science (Guest Lecture by Junjie Zhao)
Description
- Brief introduction to gravitational wave (引力波简要介绍) - Part I: Bayesian inference (贝叶斯推断) - Definition of “probability” ("概率"的定义) - Rethink the interpretations (重思概率诠释) - Frequentist statistics (频率学派) - Bayesian statistics (贝叶斯学派) - Bayes' theorem (贝叶斯定理) - Application to the detection of gravitational wave (在引力波探测上应用) - Bayesian inference framework (贝叶斯推断框架) - Parameter estimation for gravitational-wave data (引力波数据分析中参数估计) - Model selection for gravitational-wave data (引力波数据分析中模型选择) - Q & A - Part II: Bayesian computation (贝叶斯计算方法) - Markov Chain Monte Carlo (MCMC; 马尔可夫链-蒙特卡罗方法) - hands-on tiny mcmc example - Nested sampling (嵌套采样) - hands-on tiny nested-sampling example - Part III: All in gravitational-wave data (一切尽在引力波数据中) - Use Bilby & Parallel Bilby in the GW data analysis - nShow the complete pipeline for the data analysis - The AMAZING Thomas Bayes (为美好的世界献上"贝叶斯定理") - Q & A
- Date:2023/12/16 | Video recording | Slide: PDF
- Date:2023/12/17 | Video recording | Slide: PDF
-
Seminar Coordinator: He Wang ( hewang@ucas.ac.cn )
-
Seminar Designer: Junjie Zhao (junjiezhao@bnu.edu.cn)
Dr. Junjie Zhao (赵俊杰) received his Ph.D. degree in theoretical physics from Peking University in 2021 and is currently doing scientific research as a "LiYun" postdoctoral fellow (励耘博士后) in the Department of Astronomy, Beijing Normal University. The main research interests are gravitational-wave physics, testing gravity, physics of pulsar, etc.
Below is the overview of this seminar.
- Brief introduction to gravitational wave (引力波简要介绍)
-
Part I: Bayesian inference (贝叶斯推断)
- Definition of “probability” ("概率"的定义)
- Rethink the interpretations (重思概率诠释)
- Frequentist statistics (频率学派)
- Bayesian statistics (贝叶斯学派)
- Bayes' theorem (贝叶斯定理)
- Application to the detection of gravitational wave (在引力波探测上应用)
- Bayesian inference framework (贝叶斯推断框架)
- Parameter estimation for gravitational-wave data (引力波数据分析中参数估计)
- Model selection for gravitational-wave data (引力波数据分析中模型选择)
-
Q & A
-
Part II: Bayesian computation (贝叶斯计算方法)
- Markov Chain Monte Carlo (MCMC; 马尔可夫链-蒙特卡罗方法)
- hands-on tiny mcmc example
- Nested sampling (嵌套采样)
- hands-on tiny nested-sampling example
- Markov Chain Monte Carlo (MCMC; 马尔可夫链-蒙特卡罗方法)
-
Part III: All in gravitational-wave data (一切尽在引力波数据中)
- Use Bilby & Parallel Bilby in the GW data analysis
- Show the complete pipeline for the data analysis
-
The AMAZING Thomas Bayes (为美好的世界献上"贝叶斯定理")
-
Q & A
Here, I recommend using the conda
or mamba
command to manage your environment.
Please make sure you have installed the
Miniforge
/
Miniconda
/
Anaconda
software.
Recommend: you can always replace the
conda
with themamba
(alternative faster conda) to manage your environment.
You can run
conda --version
mamba --version
to check your conda
or mamba
environment.
Warning: if you are using the
Windows
computer, please install WSL2 or use the remote Linux server to obtain the best experience.
To create the full
environment, run the following command:
bash ./envs/update_igwn_envs.sh
If your network is blocked, please try
conda env update -f ./envs/igwn-py310-linux-64.yaml
for the Linux x86-64
and Linux amd64
architecture.
For the macOS x86-64
architecture
conda env update -f ./envs/igwn-py310-osx-64.yaml
For the macOS arm64
(Apple silicon)
conda env update -f ./envs/igwn-py310-osx-arm64.yaml
conda create -n igwn-py310 python=3.10 numpy scipy lalsuite pycbc bilby parallel-bilby dynesty emcee jupyterlab ipympl ipywidgets
More advanced commands for conda
/ mamba
can be found at Managing environments