/EA-BEV

EA-BEV: Edge-aware Bird' s-Eye-View Projector for 3D Object Detection

Primary LanguagePythonApache License 2.0Apache-2.0

EA-BEV: Edge-aware Bird' s-Eye-View Projector for 3D Object Detection

EA-BEV

paper

News

  • 2023.4.6 create README.md

Main Result

nuScenes detection test

Method mAP NDS
BEVFusion(Peking University) 71.3 73.3
+EA-BEV 71.8 73.6

nuScenes detection validation

Method mAP NDS Latency(ms)
BEVDepth 35.1 47.5 110.3
+EA-BEV 40.4 48.2 114.8
BEVFusion(MIT) 68.5 71.4 119.2
+EA-BEV 69.4 71.8 123.6
BEVFusion(Peking University) 69.6 72.1 190.3
+EA-BEV 70.3 72.6 194.9

nuScenes BEV map segmentation validation

Method Drivable Ped.Cross. Walkway Stop Line Carpark Divider Mean
BEVFusion(MIT) 85.5 60.5 67.6 52.0 57.0 53.7 62.7
+EA-BEV 85.8 61.1 68.0 52.3 56.8 54.5 63.1

Visualization results

nuScenes 3D object detection

nuScenes map segmentation

Use EA-BEV

install and date preparation

For environment installation method, please refer to BEVFusion.

beachmark Evaluation and Training

# training example for EA-BEV
# first train camera stream
./tools/dist_train.sh configs/EA-BEV/cam_stream/eabev_tf_4x8_20e_nusc_cam_lr.py 8
# then train LiDAR stream (using fade strategy)
./tools/dist_train.sh configs/EA-BEV/lidar_stream/transfusion_nusc_voxel_L.py 8
# then train BEVFusion
./tools/dist_train.sh configs/EA-BEV/eabev_tf_4x8_10e_nusc_aug.py 8

### evaluation example for EA-BEV
./tools/dist_test.sh configs/EA-BEV/eabev_ft_4x8_10e_nusc_aug.py ./work_dirs/ea-bev_tf.pth 8 --eval bbox

Acknowlegement

We sincerely thank the authors of BEVFusion(Peking University), BEVFusion(MIT), mmdetection3d, TransFusion for open sourcing their methods.