Licheng Zhong · Lixin Yang · Kailin Li · Haoyu Zhen · Mei Han . Cewu Lu
Project Page | arXiv | Data
demo_video.mp4
git clone https://github.com/Colmar-zlicheng/Color-NeuS.git
cd Color-NeuS
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirement.txt
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
- IHO Video
- DTU (NeuS Preprocess Link | Raw Link)
- BlendedMVS (NeuS Preprocess Link | Raw Link)
- OmniObject3D
- set
${DATASET}
as one in[iho, dtu, bmvs, omniobject3d]
- set
${OBJECT_NAME}
as the name of the object in the dataset
python train.py -g 0 --config configs/Color_NeuS_${DATASET}.yaml -obj ${OBJECT_NAME} --exp_id ${EXP_ID}
-g, --gpu_id
, visible GPUs for training, e.g.-g 0
. Only supports single GPU.--exp_id
specify the name of experiment, e.g.--exp_id ${EXP_ID}
. When--exp_id
is provided, the code requires that no uncommitted change is remained in the git repo. Otherwise, it defaults to'default'
for training and'eval_{cfg}_{OBJECT_NAME}'
for evaluation. All results will be saved inexp/${EXP_ID}*{timestamp}
.
# IHO Video: ghost_bear
python train.py -g 0 --config configs/Color_NeuS_iho.yaml -obj ghost_bear --exp_id Color_NeuS_iho_ghost_bear
# DTU: dtu_scan83
python train.py -g 0 --config configs/Color_NeuS_dtu.yaml -obj 83 --exp_id Color_NeuS_dtu_83
# BlendedMVS: bmvs_bear
python train.py -g 0 --config configs/Color_NeuS_bmvs.yaml -obj bear --exp_id Color_NeuS_bmvs_bear
# OmniObject3D: doll_002
python train.py -g 0 --config configs/Color_NeuS_omniobject3d.yaml -obj doll_002 --exp_id Color_NeuS_omniobject3d_doll_002
All the training checkpoints are saved at exp/${EXP_ID}_{timestamp}/checkpoints/
We also provide our implementation of NeuS in this repo. To train NeuS, you can replace Color_NeuS_${DATASET}.yaml
with NeuS_${DATASET}.yaml
in the above command line, such as:
# IHO Video: ghost_bear
python train.py -g 0 --config configs/NeuS_iho.yaml -obj ghost_bear --exp_id NeuS_iho_ghost_bear
- set corresponding
${DATASET}
and${OBJECT_NAME}
as above - set
${PATH_TO_CHECKPOINT}
as the path to the checkpoint (.pth.tar) to be loaded
python evaluation.py -g 0 --config configs/Color_NeuS_${DATASET}.yaml -obj ${OBJECT_NAME} -rr 512 --reload ${PATH_TO_CHECKPOINT}
-rr, --recon_res
is the resolution of the reconstructed mesh. The default value is 512.
This code is available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using the code you agree to the terms in the LICENSE.
@article{zhong2023colorneus,
author = {Zhong, Licheng and Yang, Lixin and Li, Kailin and Zhen, Haoyu and Han, Mei and Lu, Cewu},
title = {{Color-NeuS}: Reconstructing Neural Implicit Surfaces with Color},
journal = {arXiv preprint arXiv:2308.06962},
year = {2023},
}
For more questions, please contact Licheng Zhong: zlicheng@sjtu.edu.cn