/ms_deisotope

A library for deisotoping and charge state deconvolution of complex mass spectra

Primary LanguagePythonApache License 2.0Apache-2.0

image

A Library for Deisotoping and Charge State Deconvolution For Mass Spectrometry

This library combines brainpy and ms_peak_picker to build a toolkit for MS and MS/MS data. The goal of these libraries is to provide pieces of the puzzle for evaluating MS data modularly. The goal of this library is to combine the modules to streamline processing raw data.

Installing

ms_deisotope uses PEP 517 and 518 build system definition and isolation to ensure all of its compile-time dependencies are installed prior to building. Normal installation should work with pip, and pre-built wheels are available for Windows.

C Extensions

ms_deisotope and several of its dependencies use C extensions to make iterative operations much faster. If you plan to use this library on a large amount of data, I highly recommend you ensure they are installed:

Building C extensions from source requires a version of Cython >= 0.27.0

Compiling C extensions requires that numpy, brain-isotopic-distribution, and ms_peak_picker be compiled and installed prior to building ms_deisotope:

If these libraries are not installed, ms_deisotope will fall back to using pure Python implementations, which are much slower.

API

Data Access

ms_deisotope can read from mzML, mzXML and MGF files directly, using the pyteomics library. On Windows, it can also use comtypes to access Thermo's MSFileReader.dll to read RAW files and Agilent's MassSpecDataReader.dll to read .d directories. Whenever possible, the library provides a common interface to all supported formats. With Thermo's pure .NET library, it can use pythonnet to read Thermo RAW files on Windows and Linux (and presumably Mac, too).

All supported readers provide fast random access for uncompressed files, and support the Iterator interface.

Gzip compressed mzML, mzXML, and MGF files are transparently decompressed with unaffected sequential access time but can be very slow for random access. ms_deisotope supports idzip-flavor gzip compressed files which provide the same degree of data compression as gzip (and backwards-compatible with programs expecting gzip) but offers near-uncompressed random access speed.

Averagine

An "Averagine" model is used to describe the composition of an "average amino acid", which can then be used to approximate the composition and isotopic abundance of a combination of specific amino acids. Given that often the only solution available is to guess at the composition of a particular m/z because there are too many possible elemental compositions, this is the only tractable solution.

This library supports arbitrary Averagine formulae, but the Senko Averagine is provided by default: {"C": 4.9384, "H": 7.7583, "N": 1.3577, "O": 1.4773, "S": 0.0417}

ms_deisotope includes several pre-defined averagines (or "averagoses" as may be more appropriate):
  1. Senko's peptide - ms_deisotope.peptide
  2. Native N- and O-glycan - ms_deisotope.glycan
  3. Permethylated glycan - ms_deisotope.permethylated_glycan
  4. Glycopeptide - ms_deisotope.glycopeptide
  5. Sulfated Glycosaminoglycan - ms_deisotope.heparan_sulfate
  6. Unsulfated Glycosaminoglycan - ms_deisotope.heparin

Deconvolution

The general-purpose averagine-based deconvolution procedure can be called by using the high level API function deconvolute_peaks, which takes a sequence of peaks, an averagine model, and a isotopic goodness-of-fit scorer:

The result is a deisotoped and charge state deconvoluted peak list where each peak's neutral mass is known and the fitted charge state is recorded along with the isotopic peaks that gave rise to the fit.

Refer to the documentation for a deeper description of isotopic pattern fitting.