Lecture video repository with some comments or time stamps
-
Convolutional Neural Networks for Text Classification:
- https://youtu.be/bnmAsFBl4E4#t=1h08m08s (15m 30s)
-
Fully-Connected Layer Perspective about Convolution:
- https://youtu.be/bnmAsFBl4E4#t=1h31m14s (13m 30s)
-
Four Different Perspectives of Matrix Multiplications (+ Brief Intro to Low-Rank Factorization):
- https://youtu.be/00rwOWPEiY4#t=2h02m19s (36m 00s)
- Prerequisite: Span, Inner Product
-
Importance of Zero-centered Activation Function: (need to confirm)
-
Dead ReLU: (need to confirm)
- 빅데이터와 정보검색 강의.
- topic modeling, word emvedding, attention models, seq2seq models, question answering, memory networks 등을 다룬다.
- 강의링크 : https://www.youtube.com/playlist?list=PLep-kTP3NkcNqn2MtzkscRlTDYTiqKjzD
- course overview (Lecture 1)
- 앞으로 배울 내용들을 간략하게 정리한다.
- https://www.youtube.com/watch?v=Z-ptwY3fkVQ&list=PLep-kTP3NkcNqn2MtzkscRlTDYTiqKjzD&index=1
- topic modeling , word embedding (Lecture 2~4)
- topic modeling, gradient descent, word embedding, negative sampling 등을 다룬다 - 키워드와 다큐먼트의 용어 언급에서 간혹 바꿔 말하는 실수가 있으니 주의
- https://www.youtube.com/watch?v=CCZ6LeanKIc&list=PLep-kTP3NkcNqn2MtzkscRlTDYTiqKjzD&index=2
- 강의내용 ...