- Redis
- Celery runner
- Core API
- ML Model
Redis setup:
- Go into the redis directory and run the following commands
- kubectl create -f sc.yaml
- kubectl create -f pv.yaml
- kubectl create -f redis-configmap.yaml
- kubectl create -f redis-statefulset.yaml
- kubectl create -f redis-service.yaml
Installing Metrics Server(Needed for horizontal pod autoscaler):
- kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml
- kubectl edit deploy -n kube-system metrics-server
- Set the arguments to the following:
args:
- --kubelet-insecure-tls
- --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
Celery setup:
- Go into the celery-task-queue/celery_runner directory and run the following commands
- kubectl create -f deploy.yaml
- kubectl create -f hpa.yaml
Core API setup:
- Go into the celery-task-queue/core_api directory and run the following commands
- kubectl create -f deploy.yaml
ML Model setup:
- Go into the celery-task-queue/ml_models directory and run the following commands
- kubectl create -f deploy.yaml
- kubectl create -f hpa.yaml
Port-forward the api service:
- kubectl port-forward svc/core-api-layer-service 8002 -n sieve