/SACC

Pytorch implementation for the paper "Strongly Augmented Contrastive Clustering".

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

Strongly Augmented Contrastive Clustering (SACC)

By Xiaozhi Deng, Dong Huang, Ding-Hua Chen, Chang-Dong Wang and Jian-Huang Lai.

This is a Pytorch implementation of the paper. ()

network

Performance

The representation encoder of the proposed SACC is ResNet34.

Dataset NMI ACC ARI
CIFAR-10 76.5 85.1 72.4
CIFAR-100 44.8 44.3 28.2
STL-10 69.1 75.9 62.6
ImageNet-10 87.7 90.5 84.3
ImageNet-dogs 45.5 43.7 28.5

Dependency

  • python>=3.7
  • pytorch>=1.6.0
  • torchvision>=0.8.1
  • munkres>=1.1.4
  • numpy>=1.19.2
  • opencv-python>=4.4.0.46
  • pyyaml>=5.3.1
  • scikit-learn>=0.23.2
  • cudatoolkit>=11.0

Configuration

There is a configuration file "config/config.yaml", where one can edit both the training and test options.

Citation

If you find SACC useful in your research, please consider citing:

@article{deng2023strongly,
  title={Strongly augmented contrastive clustering},
  author={Deng, Xiaozhi and Huang, Dong and Chen, Ding-Hua and Wang, Chang-Dong and Lai, Jian-Huang},
  journal={Pattern Recognition},
  volume={139},
  pages={109470},
  year={2023},
  publisher={Elsevier}
}

Acknowledgment for reference repos