State-of-the-art medical image segmentation methods based on various challenges! (Updated 201910)
Contents
Head
2019 MICCAI: Multimodal Brain Tumor Segmentation Challenge (BraTS2019) (Ongoing!!!)
2019 MICCAI: 6-month Infant Brain MRI Segmentation from Multiple Sites (iSeg2019) (Results)
2019 MICCAI: Automatic Structure Segmentation for Radiotherapy Planning Challenge (Results)
2018 MICCAI: Multimodal Brain Tumor Segmentation Challenge
2018 MICCAI: Ischemic stroke lesion segmentation
2018 MICCAI Grand Challenge on MR Brain Image Segmentation
Chest & Abdomen
2019 MICCAI: VerSe2019: Large Scale Vertebrae Segmentation Challenge (Ongoing!!!)
2019 MICCAI: Multi-sequence Cardiac MR Segmentation Challenge
2018 MICCAI: Left Ventricle Full Quantification Challenge
2018 MICCAI: Atrial Segmentation Challenge
2019 MICCAI: Kidney Tumor Segmentation Challenge
2019 ISBI: Segmentation of THoracic Organs at Risk in CT images
2017 ISBI & MICCAI: Liver tumor segmentation challenge
2012 MICCAI: Prostate MR Image Segmentation
Others
2018 MICCAI Medical Segmentation Decathlon
Awesome Open Source Tools
Loss functions for class imbalanced Problems
Head
2019 MICCAI: Multimodal Brain Tumor Segmentation Challenge (BraTS2019) (Ongoing!!!)
2019 MICCAI: 6-month Infant Brain MRI Segmentation from Multiple Sites (iSeg2019) (Results)
2019 MICCAI: Structure Segmentation for Radiotherapy Planning (StructSeg)
Results
Date
First Author
Title
Head & Neck OAR
Head & Neck GTV
Chest OAR
Chest GTV
20191001
Huai Chen
TBD
0.8109
0.6666
0.9011
0.5406
20191001
Fabian Isensee
nnU-Net
0.7988
0.6398
0.9083
0.5343
20191001
Yujin Hu
TBD
0.7956
0.6245
0.9024
0.5447
20191001
Xuechen Liu
TBD
-
-
0.9066
-
Heart
2019 MICCAI: Multi-sequence Cardiac MR Segmentation Challenge (MS-CMRSeg)
Multi-sequence ventricle and myocardium segmentation.
Date
First Author
Title
LV
Myo
RV
20190821
Chen Chen
Unsupervised Multi-modal Style Transfer for Cardiac MR Segmentation (arxiv)
0.92
0.83
0.88
Chest and Abdomen
Date
First Author
Title
Dice
20190905
Aimoldin Anuar
SIIM-ACR Pneumothorax Challenge - 1st place solution (pytorch)
0.8679
2019 MICCAI: Kidney Tumor Segmentation Challenge (KiTS19)
Leaderboard (2019/07/30)
Date
First Author
Title
Composite Dice
Kidney Dice
Tumor Dice
Remark
20190730
Fabian Isensee
An attempt at beating the 3D U-Net (paper)
0.9123
0.9737
0.8509
1st Place
20190730
Xiaoshuai Hou
Cascaded Semantic Segmentation for Kidney and Tumor (paper)
0.9064
0.9674
0.8454
2nd Place
20190730
Guangrui Mu
Segmentation of kidney tumor by multi-resolution VB-nets (paper)
0.9025
0.9729
0.8321
3rd Place
2019 ISBI: Segmentation of THoracic Organs at Risk in CT images (SegTHOR)
Date
First Author
Title
Esophagus
Heart
Trachea
Aorta
20190320
Miaofei Han
Segmentation of CT thoracic organs by multi-resolution VB-nets (paper)
86
95
92
94
20190606
Shadab Khan
Extreme Points Derived Confidence Map as a Cue For Class-Agnostic Segmentation Using Deep Neural Network (paper)
89.87
95.97
91.87
94
Challenge results
2017 ISBI & MICCAI: Liver tumor segmentation challenge (LiTS)
Summary: The Liver Tumor Segmentation Benchmark (LiTS), Patrick Bilic et al. 201901 (arxiv)
Date
First Author
Title
Liver Dice
Tumor Dice
201709
Xiaomeng Li
H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes, (paper) , (Keras code)
0.961
0.722
2012 MICCAI: Prostate MR Image Segmentation (PROMISE12)
Date
First Author
Title
Whole Dice
Overall Score
201904
Anonymous
3D segmentation and 2D boundary network (paper)
-
90.34
201902
Qikui Zhu
Boundary-weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation (paper)
91.41
89.59
Others
Recent results can be found here .
Task
Data Info
Fabian Isensee et al. (paper)
Yingda Xia et al. (paper)
Qihang Yu on Oct. 8
Brats
Multimodal multisite MRI data (FLAIR, T1w, T1gd,T2w), (484 Training + 266 Testing)
0.68/0.48/0.68
0.675/0.45/0.68
0.68/0.48/0.69
Heart
Mono-modal MRI (20 Training + 10 Testing)
0.93
0.92
0.93
Hippocampus head and body
Mono-modal MRI (263 Training + 131 Testing)
0.90/0.89
0.88/0.87
0.89/0.88
Liver & Tumor
Portal venous phase CT (131 Training + 70 Testing)
0.95/0.74
0.95/0.71
0.95/0.74
Lung
CT (64 Training + 32 Testing)
0.69
0.52
0.73
Pancreas & Tumor
Portal venous phase CT (282 Training +139 Testing)
0.80/0.52
0.78/0.39
0.81/0.56
Prostate central gland and peripheral
Multimodal MR (T2, ADC) (32 Training + 16 Testing)
0.76/0.90
0.69/0.867
0.75/0.89
Hepatic vessel& Tumor
CT, (303 Training + 140 Testing)
0.63/0.69
-
0.64/0.71
Spleen
CT (41 Training + 20 Testing)
0.96
-
0.97
Colon
CT (41 Training + 20 Testing)
0.56
-
0.53
Only showing Dice Score.
Recent papers on Medical Segmentation Decathlon
Date
First Author
Title
Score
20190606
Zhuotun Zhu
V-NAS: Neural Architecture Search for Volumetric Medical Image Segmentation (arxiv)
Lung tumor: 55.27; Pancreas and tumor: 79.94, 37.78 (4-fold CV)
Past Challenges (New submission closed)
2018 MICCAI: Multimodal Brain Tumor Segmentation Challenge(BraTS)
Summary: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge Spyridon Bakas et al. 201811, (arxiv)
Rank(18)
First Author
Title
Val. WT/EN/TC Dice
Test Val. WT/ET/TC Dice
1
Andriy Myronenko
3D MRI Brain Tumor Segmentation Using Autoencoder Regularization (paper)
0.91/0.823/0.867
0.884/0.766/0.815
2
Fabian Isensee
No New-Net (paper)
0.913/0.809/0.863
0.878/0.779/0.806
3
Richard McKinley
Ensembles of Densely-Connected CNNs with Label-Uncertainty for Brain Tumor Segmentation (paper)
0.903/0.796/0.847
0.886/0.732/0.799
3
Chenhong Zhou
Learning Contextual and Attentive Information for Brain Tumor Segmentation (paper)
0.9095/0.8136/0.8651
0.8842/0.7775/0.7960
New
Xuhua Ren
Task Decomposition and Synchronization for Semantic Biomedical Image Segmentation (paper)
0.915/0.832/0.883
-
2018 MICCAI: Ischemic stroke lesion segmentation (ISLES )
Date
First Author
Title
Dice
20190605
Yu Chen
OctopusNet: A Deep Learning Segmentation Network for Multi-modal Medical Images (paper)
57.90 (5-fold CV)
201812
Hoel Kervadec
Boundary loss for highly unbalanced segmentation (paper) , (pytorch 1.0 code)
65.6
201809
Tao Song
3D Multi-scale U-Net with Atrous Convolution for Ischemic Stroke Lesion Segmentation, (paper)
55.86
201809
Pengbo Liu
Stroke Lesion Segmentation with 2D Convolutional Neutral Network and Novel Loss Function, (paper)
55.23
201809
Yu Chen
Ensembles of Modalities Fused Model for Ischemic Stroke Lesion Segmentation, (paper)
-
2018 MICCAI Grand Challenge on MR Brain Image Segmentation (MRBrainS18)
Eight Label Segmentation Results (201809)
Rank
First Author
Title
Score
1
Miguel Luna
3D Patchwise U-Net with Transition Layers for MR Brain Segmentation (paper)
9.971
2
Alireza Mehrtash
U-Net with various input combinations (paper)
9.915
3
Xuhua Ren
Ensembles of Multiple Scales, Losses and Models for Segmentation of Brain Area (paper)
9.872
201906
Xuhua Ren
Brain MR Image Segmentation in Small Dataset with Adversarial Defense and Task Reorganization (arxiv )
5 fold CV Dice: 84.46
Three Label Segmentation Results (201809)
Rank
First Author
Title
GM/WM/CSF Dice
Score
1
Liyan Sun
Brain Tissue Segmentation Using 3D FCN with Multi-modality Spatial Attention (paper)
0.86/0.889/0.850
11.272
2018 MICCAI: Left Ventricle Full Quantification Challenge (LVQuan18)
Rank
First Author
Title
1
Jiahui Li
Left Ventricle Full Quantification Using Deep Layer Aggregation Based Multitask Relationship Learning, (paper)
2
Eric Kerfoot
Left-Ventricle Quantification Using Residual U-Net, (paper)
3
Fumin Guo
Cardiac MRI Left Ventricle Segmentation and Quantification: A Framework Combining U-Net and Continuous Max-Flow (paper)
2018 MICCAI: Atrial Segmentation Challenge (AtriaSeg)
Rank
First Author
Title
Score
1
Qing Xia
Automatic 3D Atrial Segmentation from GE-MRIs Using Volumetric Fully Convolutional Networks (paper)
0.932
2
Cheng Bian
Pyramid Network with Online Hard Example Mining for Accurate Left Atrium Segmentation (paper)
0.926
2
Sulaiman Vesal
Dilated Convolutions in Neural Networks for Left Atrial Segmentation in 3D Gadolinium Enhanced-MR (paper)
0.926
Awesome Open Source Tools
Loss functions for Segmentation (paper & code)
Contribute
Contributions are most welcome!
⬆ back to top